A Multi-Zone AC Voltage Converter. Part 1. Analysis of Control Characteristics

  • Evgeniy A. KOSYH
  • Sergey A. HARITONOV
  • Aleksey V. UDOVICHENKO
Keywords: AC voltage regulator, control characteristics, multi-zone control, reactive power compensation, improved electromagnetic compatibility, power electronics

Abstract

A set of activities on studying a multi-zone converter based on a classic AC voltage regulator is carried out. The control characteristic of a classic low-frequency thyristor AC voltage regulator is derived analytically. The effect a growth of power switches switching frequency has on the load voltage quality when the thyristors are replaced by transistors is studied, and the effect the type of reference signals has on the control characteristics in a pulse-phase control system is analyzed. A multi-zone transistor AC voltage converter’s adjustment characteristics are calculated using the method of switching functions, and converter simulation is performed. The r.m.s. values of the converter output voltage and its fundamental harmonic component versus the modulation depth are presented. The dependences of the output voltage total harmonic component coefficients for a multi-zone converter with a variable number of zones are presented. Recommendations for choosing the optimal number of zones in the regulator structure are suggested. It is shown that replacement of the transformer in the regulator structure by capacitive voltage dividers makes it possible to reduce the device’s overall weight and dimensions and compensate the reactive power it absorbs, thereby improving its electromagnetic compatibility with the power supply voltage. The topology of a multi-zone AC voltage converter can be implemented in either a single-phase or a three-phase version, due to which it can also be configured to operate as a voltage imbalance compensator.

Author Biographies

Evgeniy A. KOSYH

(Novosibirsk State Technical University, Novosibirsk, Russia) – Postgraduate Student, Assistant of the Electronics and Electrical Engineering Dept.

Sergey A. HARITONOV

(Novosibirsk State Technical University, Novosibirsk, Russia) – Head of the Electronics and Electrical Engineering Dept., Director of the Power Electronics Institute, Dr. Sci. (Eng.), Professor.

Aleksey V. UDOVICHENKO

(Novosibirsk State Technical University, Novosibirsk, Russia) – Docent of the Electronics and Electrical Engineering Dept., Cand. Sci. (Eng.), Docent.

References

1. Nazir R. et al. Finite Control Set Model Predictive Current Control of Non-isolated AC-AC Converters. – 2nd International Conference on Power, Control and Computing Technologies, 2022, DOI: 10.1109/ICPC2T53885.2022.9776864.
2. Udovichenko A.V., Zinoviev G.S. Analysis of Small-Switches AC Voltage Regulator with Switching Capacitors. – 21st International Conference of Young Specialists on Micro/Nanotechnologies and Electron Devices, 2020, pp. 363–366, DOI: 10.1109/EDM49804.2020. 9153479.
3. Zinoviev G.S., Udovichenko A.V. Reactive Power Compensators Based on Simple AC Voltage Regulators. –XIV International Scientific-Technical Conference on Actual Problems of Electronics Instrument Engineering (APEIE), 2018, pp. 21–24, DOI: 10.1109/APEIE.2018.8545741.
4. Gueye I., Kebe A., Diop M. Design of a Domestic Controlled Voltage Stabilizer. – 56th International Universities Power Engineering Conference, 2021, DOI: 10.1109/UPEC50034.2021.9548231.
5. Am S., Kim B., Chrin P. Study of the Control of a New AC Voltage Stabilizer using Linear Controller with Reference Frame Transformation. – 22nd European Conference on Power Electronics and Applications, 2020, DOI: 10.23919/EPE20ECCEEurope43536. 2020.9215637.
6. Kosykh E.A. AC Voltage Stabilizer for Overload and Overvoltage in Low-Voltage Networks. – XV International Scientific-Technical Conference on Actual Problems of Electronic Instrument Engineering, 2021, pp. 125–129, DOI: 10.1109/APEIE52976.2021.9647655.
7. Климаш В.С., Константинов А.М. Управляемый стабилизатор переменного напряжения трансформаторных подстанций. – Вестник ПНИПУ. Электротехника, информационные технологии, системы управления, 2022, № 42, с. 5–26.
8. Косых Е.А. и др. Регулятор переменного напряжения для защиты потребителей электроэнергии от перегрузок и перенапряжений в сетях сельской местности. – Электропитание, 2022, № 2, с. 4–14.
9. Тимошкин В.В., Попов С.С. Исследование электропривода с тиристорным регулятором напряжения. – Вестник Югорского Государственного Университета, 2022, № 3 (66), с. 99–106.
10. Голодный И.М., Синявский А.Ю., Санченко А.В. Исследование трехфазного асинхронного электропривода с тиристорным регулятором напряжения с фазоимпульсным управлением. – Вестник ВИЭСХ, 2017, № 4(29), с. 139–143.
11. Кралин А.А., Крюков Е.В., Асабин А.А. Принципы работы тиристорного регулятора величины и фазы вольтодобавочного напряжения для распределительных сетей. – Труды НГТУ им. Р.Е. Алексеева, 2019, № 2(125), с. 112–118.
12. Соснина Е.Н. и др. Исследование установившихся режимов работы распределительной электрической сети с тиристорным регулятором напряжения. – Промышленная энергетика, 2021, № 12, с. 2–15.
13. Sosnina E.N. et al. Medium-Voltage Distribution Network Parameter Optimization Using a Thyristor Voltage Regulator. – Energies, 2022, vol. 15, No. 15, 5756, DOI 10.3390/en15155756.
14. Асабин А.А. и др. Система управления тиристорного регулятора напряжения. – Интеллектуальная электротехника, 2020, № 1(9), с. 25–39.
15. Gyurov V., Duganov M., Bezhanov N. Development of a Physical Model of a Thyristor-Controlled Series Compensator for Medium Voltage Power Supply Systems. – 12th Electrical Engineering Faculty Conference, 2020, DOI:10.1109/BulEF51036.2020.9326038.
16. Sosnina E.N. et. al. Active-Adaptive Control System of the Thyristor Voltage Regulator. – IEEE PES Innovative Smart Grid Technologies Asia, 2019, pp. 1165–1169, DOI: 10.1109/ISGT-Asia. 2019.8881770.
17. ГОСТ 32144-2013. Нормы качества электрической энергии в системах электроснабжения общего назначения. М.: Стандартинформ, 2013, 16 с.
18. Бешенцев Н.А. и др. Определение параметров ударного трансформатора для испытаний на стойкость к токам короткого замыкания. – Электричество, 2023, № 8, с. 23–29.
19. Баховцев И.А., Зиновьев Г.С. Обобщенный анализ выходной энергии многофазных многоуровневых инверторов напряжения с широтно-импульсной модуляцией. – Электричество, 2016, № 4, с. 26–33.
20. Lopatkin N.N. Integrated Voltage Harmonics Factors Estimation of Single-Phase Multilevel Voltage Source Inverter under Simple Quarter-Wave-Symmetric Space Vector PWM Control. – IEEE International Multi-Conference on Engineering, Computer and Information Sciences, 2022, pp. 1420–1424, DOI: 10.1109/SIBIRCON56155.2022.10017033.
21. Bakas P. et al. Review of Hybrid Multilevel Converter Topologies Utilizing Thyristors for HVDC Applications. – IEEE Transactions on Power Electronics, 2021, vol. 36, No. 1, pp. 174–190, DOI: 10.1109/TPEL.2020.2997961.
22. Liu J., Dong D., Zhang D. A Hybrid Modular Multilevel Converter Family with Higher Power Density and Efficiency. – IEEE Transactions on Power Electronics, 2021, vol. 36, No. 8, pp. 9001–9014, DOI: 10.1109/TPEL.2021.3055690.
23. Anderson J.A. et al. Three Levels Are Not Enough: Scaling Laws for Multilevel Converters in AC/DC Applications. – IEEE Transactions on Power Electronics, 2021, vol. 36, No. 4, pp. 3967–3986, DOI: 10.1109/TPEL.2020.3018857.
24. Mishra P., Bhesaniya M.M. Comparison of Total Harmonic Distortion of Modular Multilevel Converter and Parallel Hybrid Modular Multilevel Converter. – 2nd International Conference on Trends in Electronics and Informatics, 2018, pp. 890–894, DOI: 10.1109/ICOEI.2018.8553887.
25. Aameria K., Dwivedi D., Chinmaya K.A. Design of a Novel Dual-Output Multilevel PWM Converter. – IEEE International Conference on Power Electronics, Drives and Energy Systems, 2022, DOI: 10.1109/PEDES56012.2022.10080270.
26. Шухарев С.А. Повышение энергетических показателей многозонных преобразователей. – Практическая силовая электроника, 2019, № 3(75), с. 41–46.
27. Супрун Д.А. и др. Принцип адаптации управления многозонным тиристорным выпрямителем электровоза переменного тока в аварийном режиме. – Научные труды КубГТУ, 2022, № 4, с. 103–113.
28. Strzelecki R. et al. Distribution Transformer with Multi-Zone Voltage Regulation for Smart Grid System Application. – IEEE 6th International Conference on Energy Smart Systems, 2019, pp. 132–137, DOI: 10.1109/ESS.2019.8764193.
29. Wijesooriya P.N., Kularatna N., Steyn-Ross D.A. Use of Multiple Transformer Windings for Efficiency Enhancement in the Series Transistor-Array Based Linear AC Voltage Regulator. – IEEE Applied Power Electronics Conference and Exposition, 2019, pp. 2414–2419, DOI: 10.1109/APEC.2019.8722202.
30. Pimenta A. et al. Active Voltage Regulation Transformer for AC Microgrids. – IEEE 9th International Power Electronics and Motion Control Conference (IPEMC2020-ECCE Asia), 2020, pp. 2012–2017, DOI: 10.1109/IPEMC-ECCEAsia48364.2020.9367821.
31. Mohns E. et al. A Fundamental Step-Up Method for Standard Voltage Transformers Based on an Active Capacitive High-Voltage Divider. – IEEE Transactions on Instrumentation and Measurement, 2019, vol. 68, No. 6, pp. 2121–2128, DOI: 10.1109/TIM.2018.2880055.
32. Shakir M. et al. Fuzzy Logic Based Closed Loop Buck Boost AC-AC Automatic Voltage Regulator. – International Conference on Engineering and Emerging Technologies, 2021, DOI: 10.1109/ICEET53442.2021.9659640.
33. Udovichenko A.V. New Transformerless AC Voltage Regulators as Devices to Improve of Power Quality. – 12th International Conference on Actual Problems of Electronics Instrument Engineering, 2014, pp. 766–769, DOI: 10.1109/APEIE.2014.7040789.
34. Kosykh E.A. et al. Analysis of the Control System for a Soft Starter of an Induction Motor Based on a Multi-Zone AC Voltage Converter. – Electronics, 2023, 12 (1): 56, DOI:10.3390/electronics12010056.
35. Panfilov D.I., Petrov M.I., Astashev M.G. Application of AC Voltage Regulators for Asynchronous Motors Connection to the Power Supply. – 26th International Workshop on Electric Drives: Improvement in Efficiency of Electric Drives, 2019, DOI: 10.1109/IWED.2019.8664380.
36. Jamil Asghar M.S. Three-Phase Dynamic AC Braking of Induction Motors by Discontinuous Phase-Controlled Switching. – International Conference on Power, Instrumentation, Energy and Control, 2023, DOI: 10.1109/PIECON56912.2023.10085833.
---
Исследование выполнено за счет гранта Российского научного фонда № 23-29-10055, https://rscf.ru/project/23-29-10055/, за счет финансовой поддержки от Правительства Новосибирской области, соглашение № р-67
#
\1. Nazir R. et al. Finite Control Set Model Predictive Current Control of Non-isolated AC-AC Converters. – 2nd International Conference on Power, Control and Computing Technologies, 2022, DOI: 10.1109/ICPC2T53885.2022.9776864.
2. Udovichenko A.V., Zinoviev G.S. Analysis of Small-Switches AC Voltage Regulator with Switching Capacitors. – 21st International Conference of Young Specialists on Micro/Nanotechnologies and Electron Devices, 2020, pp. 363–366, DOI: 10.1109/EDM49804. 2020.9153479.
3. Zinoviev G.S., Udovichenko A.V. Reactive Power Compensators Based on Simple AC Voltage Regulators. – XIV International Scientific-Technical Conference on Actual Problems of Electronics Instrument Engineering (APEIE), 2018, pp. 21–24, DOI: 10.1109/APEIE.2018.8545741.
4. Gueye I., Kebe A., Diop M. Design of a Domestic Controlled Voltage Stabilizer. – 56th International Universities Power Engineering Conference, 2021, DOI: 10.1109/UPEC50034.2021.9548231.
5. Am S., Kim B., Chrin P. Study of the Control of a New AC Voltage Stabilizer using Linear Controller with Reference Frame Transformation. – 22nd European Conference on Power Electronics and Applications, 2020, DOI: 10.23919/EPE20ECCEEurope43536. 2020.9215637.
6. Kosykh E.A. AC Voltage Stabilizer for Overload and Overvoltage in Low-Voltage Networks. – XV International Scientific-Technical Conference on Actual Problems of Electronic Instrument Engineering, 2021, pp. 125–129, DOI: 10.1109/APEIE52976.2021. 9647655.
7. Klimash V.S., Konstantinov А.М. Vestnik PNIPU. Elektrotekhnika, informatsionnye tekhnologii, sistemy upravleniya – in Russ. (Bulletin of PNRPU. Electrical Engineering, Information Technology, Control Systems), 2022, No. 42, pp. 5–26.
8. Kosyh Е.А. et al. Elektropitanie – in Russ. (Power Supply), 2022, No. 2, pp. 4–14.
9. Timoshkin V.V., Popov S.S. Vestnik Yugorskogo Gosudarstvennogo Universiteta – in Russ. (Bulletin of the Ugra State University), 2022, No. 3 (66), pp. 99–106.
10. Golodnyy I.M., Sinyavskiy A.Yu., Sanchenko A.V. Vestnik VIESKH – in Russ. (Vestnik VIESH), 2017, No. 4(29), pp. 139–143.
11. Kralin A.A., Kryukov E.V., Asabin А.А. Trudy NGTU im. R.E. Alekseeva – in Russ. (Proceedings of the NSTU n.a. R.E. Alekseev), 2019, No. 2(125), pp. 112–118.
12. Sosnina E.N. et al. Promyshlennaya energetika – in Russ. (Industrial Power Engineering), 2021, No. 12, pp. 2–15.
13. Sosnina E.N. et al. Medium-Voltage Distribution Network Parameter Optimization Using a Thyristor Voltage Regulator. – Energies, 2022, vol. 15, No. 15, 5756, DOI 10.3390/en15155756.
14. Asabin А.А. et al. Intellektual'naya elektrotekhnika – in Russ. (Smart Electrical Engineering), 2020, No. 1(9), pp. 25–39.
15. Gyurov V., Duganov M., Bezhanov N. Development of a Physical Model of a Thyristor-Controlled Series Compensator for Medium Voltage Power Supply Systems. – 12th Electrical Engineering Faculty Conference, 2020, DOI:10.1109/BulEF51036.2020.9326038.
16. Sosnina E.N. et. al. Active-Adaptive Control System of the Thyristor Voltage Regulator. – IEEE PES Innovative Smart Grid Technologies Asia, 2019, pp. 1165–1169, DOI: 10.1109/ISGT-Asia. 2019.8881770.
17. GОSТ 32144-2013. Normy kachestva elektricheskoy energii v sistemah elektrosnabzheniya obshchego naznacheniya (Power Quality Limits in the Public Power Supply Systems). M.: Standartinform, 2013, 16 p.
18. Beshentsev N.А. et al. Elektrichestvo – in Russ. (Electricity), 2023, No. 8, pp. 23–29.
19. Bahovtsev I.A., Zinov'ev G.S. Elektrichestvo – in Russ. (Electricity), 2016, No. 4, pp. 26–33.
20. Lopatkin N.N. Integrated Voltage Harmonics Factors Estimation of Single-Phase Multilevel Voltage Source Inverter under Simple Quarter-Wave-Symmetric Space Vector PWM Control. – IEEE International Multi-Conference on Engineering, Computer and Information Sciences, 2022, pp. 1420–1424, DOI: 10.1109/SIBIRCON56155.2022.10017033.
21. Bakas P. et al. Review of Hybrid Multilevel Converter Topologies Utilizing Thyristors for HVDC Applications. – IEEE Transactions on Power Electronics, 2021, vol. 36, No. 1, pp. 174–190, DOI: 10.1109/TPEL.2020.2997961.
22. Liu J., Dong D., Zhang D. A Hybrid Modular Multilevel Converter Family with Higher Power Density and Efficiency. – IEEE Transactions on Power Electronics, 2021, vol. 36, No. 8, pp. 9001–9014, DOI: 10.1109/TPEL.2021.3055690.
23. Anderson J.A. et al. Three Levels Are Not Enough: Scaling Laws for Multilevel Converters in AC/DC Applications. – IEEE Transactions on Power Electronics, 2021, vol. 36, No. 4, pp. 3967–3986, DOI: 10.1109/TPEL.2020.3018857.
24. Mishra P., Bhesaniya M.M. Comparison of Total Harmonic Distortion of Modular Multilevel Converter and Parallel Hybrid Modular Multilevel Converter. – 2nd International Conference on Trends in Electronics and Informatics, 2018, pp. 890–894, DOI: 10.1109/ICOEI.2018.8553887.
25. Aameria K., Dwivedi D., Chinmaya K.A. Design of a Novel Dual-Output Multilevel PWM Converter. – IEEE International Conference on Power Electronics, Drives and Energy Systems, 2022, DOI: 10.1109/PEDES56012.2022.10080270.
26. Shuharev S.А. Prakticheskaya silovaya elektronika – in Russ. (Practical Power Electronics), 2019, No. 3(75), pp. 41–46.
27. Suprun D.А. et al. Nauchnye trudy KubGTU – in Russ. (Scientific Works of KubSTU), 2022, No. 4, pp. 103–113.
28. Strzelecki R. et al. Distribution Transformer with Multi-Zone Voltage Regulation for Smart Grid System Application. – IEEE 6th International Conference on Energy Smart Systems, 2019, pp. 132–137, DOI: 10.1109/ESS.2019.8764193.
29. Wijesooriya P.N., Kularatna N., Steyn-Ross D.A. Use of Multiple Transformer Windings for Efficiency Enhancement in the Series Transistor-Array Based Linear AC Voltage Regulator. – IEEE Applied Power Electronics Conference and Exposition, 2019, pp. 2414–2419, DOI: 10.1109/APEC.2019.8722202.
30. Pimenta A. et al. Active Voltage Regulation Transformer for AC Microgrids. – IEEE 9th International Power Electronics and Motion Control Conference (IPEMC2020-ECCE Asia), 2020, pp. 2012–2017, DOI: 10.1109/IPEMC-ECCEAsia48364.2020.9367821.
31. Mohns E. et al. A Fundamental Step-Up Method for Standard Voltage Transformers Based on an Active Capacitive High-Voltage Divider. – IEEE Transactions on Instrumentation and Measurement, 2019, vol. 68, No. 6, pp. 2121–2128, DOI: 10.1109/TIM.2018.2880055.
32. Shakir M. et al. Fuzzy Logic Based Closed Loop Buck Boost AC-AC Automatic Voltage Regulator. – International Conference on Engineering and Emerging Technologies, 2021, DOI: 10.1109/ICEET53442.2021.9659640.
33. Udovichenko A.V. New Transformerless AC Voltage Regulators as Devices to Improve of Power Quality. – 12th International Conference on Actual Problems of Electronics Instrument Engineering, 2014, pp. 766–769, DOI: 10.1109/APEIE.2014.7040789.
34. Kosykh E.A. et al. Analysis of the Control System for a Soft Starter of an Induction Motor Based on a Multi-Zone AC Voltage Converter. – Electronics, 2023, 12 (1): 56, DOI:10.3390/electronics12010056.
35. Panfilov D.I., Petrov M.I., Astashev M.G. Application of AC Voltage Regulators for Asynchronous Motors Connection to the Power Supply. – 26th International Workshop on Electric Drives: Improvement in Efficiency of Electric Drives, 2019, DOI: 10.1109/IWED.2019.8664380.
36. Jamil Asghar M.S. Three-Phase Dynamic AC Braking of Induction Motors by Discontinuous Phase-Controlled Switching. – International Conference on Power, Instrumentation, Energy and Control, 2023, DOI: 10.1109/PIECON56912.2023.10085833
---
The study was financially supported by the Russian Science Foundation, grant No. 23-29-10055, https://rscf.ru/project/23-29-10055/, with financial support from the Government of the Novosibirsk Region, agreement No. r-67
Published
2023-10-26
Section
Article