Magnetic Field of a Permanent Magnet with Surface Relief
Abstract
The aim of this study is to find a new method for amplifying the magnetic field generated by a permanent film magnetic material. The objective is to propose a method that would be simple enough to be applied in practice and would make it possible to achieve a more efficient use of thin film magnetic materials in various fields of electrical engineering, electronics, spintronics, magnonics, and physics (e.g., to increase the interaction force between permanent magnets on the stator and current coils of the armature of microelectric motors or generators. The problem is important, because such materials are used in many fields of science and technology, where miniaturization is necessary, for example, in magnetic field sensors, spintronics devices, spin valves (so-called sensors based on the effect of giant magnetoresistance), magnonics devices, new generation information storage devices; however, along with advantages, they have some disadvantages. The article suggests a method for generating a rather strong magnetic field by a homogeneously magnetized micromagnetic film. To do so, a spatial relief having a certain period is created on the film surface. Using the method of magnetic charges, an analytical solution of the magnetostatics problem for a sinusoidal relief is obtained.
References
2. Shalygina E., Rozhnovskaya A., Shalygin A. The Influence of Quantum Size Effects on Magnetic Properties of Thin-Film Systems. – Solid State Phenomena, 2012, vol. 190, pp. 514–517, DOI: 10.1088/0031-8949/2013/T157/014036.
3. Boero G. et al. Micro-Hall Devices: Performance, Technologies and Applications. – Sensors and Actuators A Physical, 2003, vol. 106 (1), pp. 314–320, DOI: 10.1016/S0924-4247(03)00192-4.
4. Kejik P. et al. An Integrated Micro-Hall Probe for Scanning Magnetic Microscopy. – Sensors and Actuators A Physical, 2006, vol. 129 (1-2), pp. 212–215, DOI: 10.1016/j.sna.2005.11.061.
5. Mohanraj D. et al. A Review of BLDC Motor: State of Art, Advanced Control Techniques, and Applications. – IEEE Access, 2022, vol. 10, pp. 54833–54869, DOI: 10.1109/ACCESS.2022.3175011.
6. Mahmud M. et al. Control BLDC Motor Speed using PID Controller. – IJACSA, 2020, vol. 11, No. 3, pp. 477–481, DOI: 10.14569/IJACSA.2020.0110359.
7. Бурмитских А.В., Клешнина С.А., Креков С.Д. Исследование магнитоимпеданса тонких пленок при ферромагнитном резонансе. – Современные проблемы радиоэлектроники. Красноярск, 2022, с. 534–538.
8. Беляев Б.А. и др. Особенности поведения магнитных характеристик вблизи краев тонких пермаллоевых пленок. – Известия вузов. Физика, 2020, т. 63, № 1, с. 17–23.
9. Ландау Л.Д., Лифшиц Е.М. Электродинамика сплошных сред. М.: Физматлит, 2016, 656 с.
10. Jogschies L. et al. Recent Developments of Magnetoresistive Sensors for Industrial Applications. – Sensors, 2015, vol. 15, No. 11, pp. 28665–28689, DOI: 10.3390/s151128665.
11. Huai Y. Spin-Transfer Torque MRAM (STT-MRAM): Challenges and Prospects. – AAPPS Bulletin, 2008, vol. 18, No. 6, pp. 33–40.
12. Касаткин С.И., Васильева Н.П., Муравьёв А.М. Биосенсоры на основе тонкопленочных магниторезистивных датчиков. – Автоматика и телемеханика, 2010, вып. 1, с. 174–186.
13. Yuasa S. et al. Materials for Spin-Transfer-Torque Magnetoresistive Random-Access Memory. – MRS Bulletin, 2018, vol. 43 (05), pp. 352–357, DOI: 10.1557/mrs.2018.93.
14. Abrunhosa S. et al. Reading Thin Film Permanent Magnet Irregular Patterns Using Magnetoresistive Sensors. – Sensors and Actuators A Physical, 2020, vol. 303, Art. No. 111673, DOI: 10.1016/j.sna.2019.111673.
15. Wang C. et al. Highly Sensitive Magnetic Sensor Based on Anisotropic Magnetoresistance Effect. – IEEE Transactions on Magnetics, 2018, vol. 54 (11), DOI: 10.1109/TMAG.2018.2846758.
16. Ферт А. Происхождение, развитие и перспективы спинтроники. – УФН, 2008, т. 178, № 12, с. 1336–1348.
17. Matsuura Y. Recent Development of Nd–Fe–B Sintered Magnets and Their Applications. – Journal of Magnetism and Magnetic Materials, 2006, vol. 303, No. 2, pp. 344–347, DOI: 10.1002/chin.200640222.
18. Marioni M.A. et al. Halbach Effect at the Nanoscale from Chiral Spin Textures. – Nano Letters, 2018, vol. 18, No. 4, pp. 2263–2267, DOI: 10.1021/acs.nanolett.7b04802.
19. Пятаков М.А., Акимов М.Л., Поляков П.А. О пондеромоторной магнитной силе взаимодействия половинок однородно намагниченного цилиндрического стержня. – Ученые записки физического факультета Московского университета, 2023, № 4, с. 2341508-1–2341508-8.
20. Поляков О.П., Поляков П.А. Определение оптимальной формы постоянных магнитов заданного объема, при которой сила их магнитного сцепления максимальна. – Заводская лаборатория. Диагностика материалов, 2023, т. 89, № 10, с. 34–39.
21. Пятаков М.А., Акимов М.Л., Поляков П.А. Взаимодействие неоднородного постоянного магнита, состоящего из решетки магнитожестких полосок, с массивной ферромагнитной средой. – Известия РАН. Серия физическая, 2021, т. 85, № 11, с. 1568–1572.
22. Пятаков М.А., Поляков П.А., Русакова Н.Е. Изучение взаимодействия ферромагнетиков и расчет меры этого взаимодействия. – Известия РАН. Серия физическая, 2020, т. 84, № 5, с. 719–722.
---
Работа поддержана Фондом развития теоретической физики и математики «БАЗИС»
#
1. Tsidaeva N.I. et al. Magneto-Optical Investigation of Thin-Film Magnetic Structures. – Physica Scripta, 2013, vol. 157, DOI: 10.1088/0031-8949/2013/T157/014036.
2. Shalygina E., Rozhnovskaya A., Shalygin A. The Influence of Quantum Size Effects on Magnetic Properties of Thin-Film Systems. – Solid State Phenomena, 2012, vol. 190, pp. 514–517, DOI: 10.1088/0031-8949/2013/T157/014036.
3. Boero G. et al. Micro-Hall Devices: Performance, Technologies and Applications. – Sensors and Actuators A Physical, 2003, vol. 106 (1),pp. 314–320, DOI: 10.1016/S0924-4247(03)00192-4.
4. Kejik P. et al. An Integrated Micro-Hall Probe for Scanning Magnetic Microscopy. – Sensors and Actuators A Physical, 2006, vol. 129 (1-2), pp. 212–215, DOI: 10.1016/j.sna.2005.11.061.
5. Mohanraj D. et al. A Review of BLDC Motor: State of Art, Advanced Control Techniques, and Applications. – IEEE Access, 2022, vol. 10, pp. 54833–54869, DOI: 10.1109/ACCESS.2022.3175011.
6. Mahmud M. et al. Control BLDC Motor Speed using PID Controller. – IJACSA, 2020, vol. 11, No. 3, pp. 477–481, DOI: 10.14569/IJACSA.2020.0110359.
7. Burmitskih A.V., Kleshnina S.A., Krekov S.D. Sovremennye problemy radioelektroniki – in Russ. (Modern Problems of Radio Electronics). Krasnoyarsk, 2022, pp. 534–538.
8. Belyaev B.А. et al. Izvestiya vuzov. Fizika – in Russ. (News of Universities. Physics), 2020, vol. 63, No. 1, pp. 17–23.
9. Landau L.D., Lifshits Е.М. Elektrodinamika sploshnyh sred (Electrodynamics of Continuous Media). M.: Fizmatlit, 2016, 656 p.
10. Jogschies L. et al. Recent Developments of Magnetoresistive Sensors for Industrial Applications. – Sensors, 2015, vol. 15, No. 11, pp. 28665–28689, DOI: 10.3390/s151128665.
11. Huai Y. Spin-Transfer Torque MRAM (STT-MRAM): Challenges and Prospects. – AAPPS Bulletin, 2008, vol. 18, No. 6, pp. 33–40.
12. Kasatkin S.I., Vasil'eva N.P., Murav'yov А.М. Avtomatika i Telemekhanika – in Russ. (Automation and Telemechanics), 2010, iss. 1, pp. 174–186.
13. Yuasa S. et al. Materials for Spin-Transfer-Torque Magnetoresistive Random-Access Memory. – MRS Bulletin, 2018, vol. 43 (05), pp. 352–357, DOI: 10.1557/mrs.2018.93.
14. Abrunhosa S. et al. Reading Thin Film Permanent Magnet Irre-gular Patterns Using Magnetoresistive Sensors. – Sensors and Actuators A Physical, 2020, vol. 303, Art. No. 111673, DOI: 10.1016/j.sna.2019.111673.
15. Wang C. et al. Highly Sensitive Magnetic Sensor Based on Anisotropic Magnetoresistance Effect. – IEEE Transactions on Magnetics, 2018, vol. 54 (11), DOI: 10.1109/TMAG.2018.2846758.
16. Fert А. UFN – in Russ. (UFN), 2008, vol. 178, No. 12, pp. 1336–1348.
17. Matsuura Y. Recent Development of Nd–Fe–B Sintered Magnets and Their Applications. – Journal of Magnetism and Magnetic Materials, 2006, vol. 303, No. 2, pp. 344–347, DOI: 10.1002/chin. 200640222.
18. Marioni M.A. et al. Halbach Effect at the Nanoscale from Chiral Spin Textures. – Nano Letters, 2018, vol. 18, No. 4, pp. 2263–2267, DOI: 10.1021/acs.nanolett.7b04802.
19. Pyatakov M.A., Akimov M.L., Polyakov P.А. Uchenye zapiski fizicheskogo fakul'teta Moskovskogo universiteta – in Russ. (Scientific Notes of the Faculty of Physics of the Moscow University), 2023, No. 4, pp. 2341508-1–2341508-8.
20. Polyakov O.P., Polyakov P.А. Zavodskaya laboratoriya. Diagnostika materialov – in Russ. (Factory Laboratory. Diagnostics of Materials), 2023, vol. 89, No. 10, pp. 34–39.
21. Pyatakov M.A., Akimov M.L., Polyakov P.А. Izvestiya RAN. Seriya fizicheskaya – in Russ. (News of the Russian Academy of Sciences. The Series Is Physical), 2021, vol. 85, No. 11, pp. 1568–1572.
22. Pyatakov М.А., Polyakov P.А., Rusakova N.Е. Izvestiya RAN. Seriya fizicheskaya – in Russ. (News of the Russian Academy of Sciences. The Series Is Physical), 2020, vol. 84, No. 5,pp. 719–722.
---
The work was supported by the Foundation for the Development of Theoretical Physics and Mathematics "BASIS"