A Cryogenically-cooled Three-phase Power Factor Corrector for Advanced Aircraft Power Supply Systems

  • Aleksey O. ALEKSEEV
  • Dmitriy M. SHISHOV
  • Pavel A. TROSHIN
  • Daniil A. SHEVTSOV
Keywords: pcryogenic cooling, cryogenic electronics, high-temperature superconductivity, HTS, advanced aircraft power supply system, power factor correction, power converter stage

Abstract

The power supply systems of advanced aviation concepts, such as a more or fully electric aircraft, involve the operation of high-temperature superconductor (HTS) devices together with power semiconductor converters. Since modern HTS materials require their cooling to critical temperatures achieved using cryogenic cooling, it is advisable to study the possibility of using the cryogenic cooling for cooling semiconductor power converters. The article considers the development of a prototype controlled three-phase rectifier with cryogenic cooling of its power stage for use in advanced aircraft power supply systems. The rectifier is built as a power factor corrector to meet the power quality requirements imposed by aviation standards. To achieve more efficient operation of the power supply system, it is proposed to use an increased bipolar DC voltage. The structures of power converter stages are analyzed by way of comparison; the preliminary quality indicators of the power consumed by them have been studied, and a rational structure for this application has been selected. The results of computer simulation and the design of the developed prototype are shown. In the course of testing the assembled device, its performance under cryogenic conditions at an increased DC output voltage has been confirmed. The results of accomplished experimental studies are presented.

Author Biographies

Aleksey O. ALEKSEEV

(Moscow Aviation Institute (National Research University), Moscow, Russia) – Engineer of the Hybryd and Electric Propulsion Systems Lab., Institution No.14.

Dmitriy M. SHISHOV

(Moscow Aviation Institute (National Research University), Moscow, Russia) – Leading Engineer of the Hybryd and Electric Propulsion Systems Lab., Institution No.14., Cand. Sci. (Eng.).

Pavel A. TROSHIN

Moscow Aviation Institute (National Research University), Moscow, Russia) – Engineer of the Hybryd and Electric Propulsion Systems Lab., Institution No.14.

Daniil A. SHEVTSOV

(Moscow Aviation Institute (National Research University), Moscow, Russia) – Professor  of the Electric Power, Electromechanical and Biotechnical Systems Dept., Dr. Sci. (Eng.).

References

1. Левин А.В. и др. Электрический самолет: концепция и технологии. Уфа: УГАТУ, 2014, 388 с.
2. Вавилов В.Е. и др. Перспективы развития авиационных электрических машин. – Электричество, 2023, № 9, с. 4–12.
3. Ковалев К.Л. и др. Перспективы применения сверхпроводниковых устройств на борту полностью электрического самолета с гибридной силовой установкой. – Электричество, 2018, № 10, с. 45–53.
4. Dezhin D. et al. System Approach of Usability of HTS Electrical Machines in Future Electric Aircraft, – IEEE Transactions on Applied Superconductivity, 2018, vol. 28, No. 4, DOI: 10.1109/TASC.2017.2787180.
5. Ostapchouk M. et al. Research of Static and Dynamic Properties of Power Semiconductor Diodes at Low and Cryogenic Temperatures. – Inventions, 2022, 7(4): 96, DOI: 10.3390/inventions7040096.
6. Mueller O.M., Herd K.G. Ultra-High Efficiency Power Conversion Using Cryogenic MOSFETs and HT-Superconductors. – Power Electronics Specialist Conference, 1993, pp. 772–778, DOI: 10.1109/PESC.1993.472011.
7. Wei Y. et al. Power Relay Based Multiple Device Cryogenic Characterization Method and Results. – IEEE Open Journal of Industry Applications, 2022, vol. 3, pp. 211–223, DOI: 10.1109/OJIA.2022. 3195278.
8. ГОСТ Р 54073-2017. Системы электроснабжения самолетов и вертолетов. Общие требования и нормы качества электроэнергии. М.: Стандартинформ, 2018, 39 с.
9. Zanegin S. et al. Losses Analysis of HTS Racetrack Coil Carrying a Distorted Sinusoidal Current. – International Conference on Electrotechnical Complexes and Systems, 2021, pp. 297–300. DOI: 10.1109/ICOECS52783.2021.9657338.
10. Song W., Fang J., Jiang Z. Numerical AC Loss Analysis in HTS Stack Carrying Nonsinusoidal Transport Current, – IEEE Transactions on Applied Superconductivity, 2019, vol. 29 (2), DOI: 10.1109/TASC.2018.2882066.
11. Cotton I., Nelms A., Husband M. Higher Voltage Aircraft Power Systems. – IEEE Aerospace and Electronic Systems Magazine, 2008, vol. 23, No. 2, pp. 25–32, DOI: 10.1109/MAES.2008.4460728.
12. Gao F. et al. An Improved Voltage Compensation Approach in a Droop-Controlled DC Power System for the More Electric Aircraft. – IEEE Transactions on Applied Superconductivity, 2016, vol. 31, No. 10, pp. 7369–7383, DOI: 10.1109/TPEL.2015.2510285.
13. Gao F. et al. Comparative Stability Analysis of Droop Control Approaches in Voltage-Source-Converter-Based DC Microgrids. – IEEE Transactions on Applied Superconductivity, 2017, vol. 32, No. 3, pp. 2395–2415, DOI: 10.1109/TPEL.2016.2567780.
14. Singh B. et al. A Review of Three-Phase Improved Power Quality AC–DC Converters. – IEEE Transactions on Industrial Electronics, 2004, vol. 51(3), pp. 641– 660, DOI:10.1109/TIE.2004.825341.
15. Kolar J.W., Friedli T. The Essence of Three-Phase PFC Rectifier Systems. Part I. – IEEE Transactions on Power Electronics, 2013, vol. 28, No. 1, pp. 176–198, DOI:10.1109/TPEL.2012.2197867.
16. Friedli T., Hartmann M., Kolar J.W. The Essence of Three-Phase PFC Rectifier Systems. Part II. – IEEE Transactions on Power Electronics, 2013, 29(2), DOI:10.1109/TPEL.2013.2258472.
17. Wang F. et al. MW-Class Cryogenically-Cooled Inverter for Electric-Aircraft Applications. – AIAA/IEEE Electric Aircraft Technologies Symposium, 2019, DOI: 10.2514/6.2019-4473.
---
Исследование выполнено за счет гранта Российского научного фонда № 23-19-00624, https://rscf.ru/project/23-19-00624/
#
1. Levin А.V. et al. Elektricheskiy samolet: kontseptsiya i tekh-nologii (Electric Aircraft: Concept and Technology). Ufa: UGATU, 2014, 388 p.
2. Vavilov V.Е. et al. Elektrichestvo – in Russ. (Electricity), 2023, No. 9, pp. 4–12.
3. Коvalyov К.L. et al. Elektrichestvo – in Russ. (Electricity), 2018, No. 10, pp. 45–53.
4. Dezhin D. et al. System Approach of Usability of HTS Electrical Machines in Future Electric Aircraft, – IEEE Transactions on Applied Superconductivity, 2018, vol. 28, No. 4, DOI: 10.1109/TASC.2017.2787180.
5. Ostapchouk M. et al. Research of Static and Dynamic Properties of Power Semiconductor Diodes at Low and Cryogenic Temperatures. – Inventions, 2022, 7(4): 96, DOI: 10.3390/inventions7040096.
6. Mueller O.M., Herd K.G. Ultra-High Efficiency Power Conversion Using Cryogenic MOSFETs and HT-Superconductors. – Power Electronics Specialist Conference, 1993, pp. 772–778, DOI: 10.1109/PESC.1993.472011.
7. Wei Y. et al. Power Relay Based Multiple Device Cryogenic Characterization Method and Results. – IEEE Open Journal of Industry Applications, 2022, vol. 3, pp. 211–223, DOI: 10.1109/OJIA.2022.3195278.
8. GОSТ R 54073-2017. Sistemy elektrosnabzheniya samoletov i vertoletov. Obshchie trebovaniya i normy kachestva elektroenergii (Electric Power Supply Systems of Airplanes and Helicopters. General Require-ments and Norms of Power Quality). M.: Standartinform, 2018, 39 p.
9. Zanegin S. et al. Losses Analysis of HTS Racetrack Coil Carrying a Distorted Sinusoidal Current. – International Conference on Electrotechnical Complexes and Systems, 2021, pp. 297–300. DOI: 10.1109/ICOECS52783.2021.9657338.
10. Song W., Fang J., Jiang Z. Numerical AC Loss Analysis in HTS Stack Carrying Nonsinusoidal Transport Current, – IEEE Transactions on Applied Superconductivity, 2019, vol. 29 (2), DOI: 10.1109/TASC.2018.2882066.
11. Cotton I., Nelms A., Husband M. Higher Voltage Aircraft Power Systems. – IEEE Aerospace and Electronic Systems Magazine, 2008, vol. 23, No. 2, pp. 25–32, DOI: 10.1109/MAES.2008.4460728.
12. Gao F. et al. An Improved Voltage Compensation Approach in a Droop-Controlled DC Power System for the More Electric Aircraft. – IEEE Transactions on Applied Superconductivity, 2016, vol. 31, No. 10, pp. 7369–7383, DOI: 10.1109/TPEL.2015.2510285.
13. Gao F. et al. Comparative Stability Analysis of Droop Control Approaches in Voltage-Source-Converter-Based DC Microgrids. – IEEE Transactions on Applied Superconductivity, 2017, vol. 32, No. 3, pp. 2395–2415, DOI: 10.1109/TPEL.2016.2567780.
14. Singh B. et al. A Review of Three-Phase Improved Power Qua-lity AC–DC Converters. – IEEE Transactions on Industrial Electronics, 2004, vol. 51(3), pp. 641– 660, DOI:10.1109/TIE.2004.825341.
15. Kolar J.W., Friedli T. The Essence of Three-Phase PFC Rectifier Systems. Part I. – IEEE Transactions on Power Electronics, 2013, vol. 28, No. 1, pp. 176–198, DOI:10.1109/TPEL.2012.2197867.
16. Friedli T., Hartmann M., Kolar J.W. The Essence of Three-Phase PFC Rectifier Systems. Part II. – IEEE Transactions on Power Electronics, 2013, 29(2), DOI:10.1109/TPEL.2013.2258472.
17. Wang F. et al. MW-Class Cryogenically-Cooled Inverter for Electric-Aircraft Applications. – AIAA/IEEE Electric Aircraft Technologies Symposium, 2019, DOI: 10.2514/6.2019-4473
---
The research was supported by the Russian Science Foundation, grant no. 23-19-00624, https://rscf.ru/project/23-19-00624
Published
2023-11-30
Section
Article