Improving the Damping Properties of a Virtual Synchronous Generator by Using a Feedforward Controller

  • Alisher B. ASKAROV
  • Aleksey A. SUVOROV
  • Nikolay Yu. RUBAN
  • Pavel P. RAD’KO
Keywords: oscillation damping, frequency response, control system, feedforward control, virtual synchronous generator, renewable energy sources

Abstract

In modern power systems, a continuous growth in the number of generating facilities based on grid inverters is observed, which leads to a significant change in the dynamic properties of power systems. This is primarily expressed in the reduction of the inertial response provided by conventional synchronous generators. In this regard, a new control strategy for grid inverters based on the virtual synchronous generator (VSG), which simulates the properties and capabilities of synchronous generation, is becoming a key technology for modern hybrid power systems. However, the conventional VSG control algorithms are characterized by a number of fundamental problems, such as the mutual influence of active and reactive power control loops. The article proposes an alternative VSG structure controlled by a reference current signal (CC-VSG). However, this structure is complex and is characterized by an insufficient damping torque when the grid strength changes. To overcome this drawback, an approach is proposed to enhance the damping properties of the CC-VSG by using a feedforward controller consisting of a simple proportional section. The analysis of the closed-loop transfer function presented in the article has demonstrated the reduction of the model order to the second one due to the proposed controller, which made it possible to derive simple dependencies for tuning the model. By considering the state-space model as well as the sensitivity and participation coefficients, the predominant influence of the developed controller’s gain on the low-frequency roots has been proven, which leads to a significant improvement in the CC-VSG damping properties. The results of dynamic simulation in the time domain have confirmed the indicated properties and capabilities of the modified CC-VSG structure with the feedforward controller. It has also been demonstrated that the damping effect has no influence on the inertial response of the modified CC-VSG structure, which is expressed in the constant frequency variation rate with increasing the damping coefficient. Accordingly, it is concluded that the modified CC-VSG structure is efficient, stable and can be flexibly tuned to obtain any desired dynamic response under conditions of different grid strength and the grid inverter power load.

Author Biographies

Alisher B. ASKAROV

(Tomsk Polytechnic University, Tomsk, Russia) – Senior Lecturer of the Division for Power and Electrical Engineering, School of Energy and Power Engineering, Cand. Sci. (Eng.).

Aleksey A. SUVOROV

Tomsk Polytechnic University, Tomsk, Russia) – Docent of the Division for Power and Electrical Engineering, School of Energy and Power Engineering, Cand. Sci. (Eng.).

Nikolay Yu. RUBAN

(Tomsk Polytechnic University, Tomsk, Russia) – Docent of the Division for Power and Electrical Engineering, School of Energy and Power Engineering, Cand. Sci. (Eng.), Docent.

Pavel P. RAD’KO

Tomsk Polytechnic University, Tomsk, Russia) – Student of the Division for Power and Electrical Engineering, School of Energy and Power Engineering.

References

1. Елистратов В.В. и др. Арктическая ветродизельная электростанция с интеллектуальной системой автоматического управления. – Электричество, 2022, № 2, с. 29–37.
2. Карамов Д.Н. и др. Анализ мирового опыта стимулирования развития возобновляемой энергетики и возможностей его применения в России. – Энергетик, 2022, № 9, с. 39–49.
3. Розанов Ю.К. Силовая электроника. М.: Издательство МЭИ, 2018, 508 с.
4. Zhong Q.C. Power-Electronics-Enabled Autonomous Power Systems: Architecture and Technical Routes. – IEEE Transactions on Industrial Electronics, 2017, vol. 64 (7), pp. 5907–5918, DOI: 10.1109/TIE.2017.2677339.
5. Домышев А.В., Барахтенко Е.А., Илюшин П.В. Обзор современных подходов к построению систем мультиагентного управления микросетями. – Электроэнергия. Передача и распределение, 2023, № 3(78), с. 46–56.
6. Стребков Д.С., Шогенов А. Солнечные фотоэлектростанции. – Электрические станции, 2017, № 12(1037), с. 45–50.
7. Илюшин П.В. Интеграция электростанций на основе возобновляемых источников энергии в Единой энергетической системе России: обзор проблемных вопросов и подходов к их решению. – Вестник МЭИ, 2022, № 4, с. 98–107.
8. Суворов А.А. и др. Верификация численных расчётов электромеханических переходных процессов при оценке устойчивости электроэнергетических систем с генерирующими объектами, использующими ВИЭ. – Электрические станции, 2022, № 1(1086), с. 25–37.
9. Дудин Р. Проблемные вопросы эксплуатации распределительных сетей с увеличивающейся долей распределенной генерации. – Электроэнергия. Передача и распределение, 2022, № S4(27), с. 40–44.
10. Разживин И.А. и др. Оценка влияния ветроэлектростанций на изменение суммарной инерции электроэнергетической системы. – Вестник Иркутского государственного технического университета, 2021, т. 25, № 2(157), с. 220–234.
11. Сигитов О.Ю., Чемборисова Н.Ш., Черненков И.Д. Анализ надежности при управлении режимами современных электроэнергетических систем. – Электроэнергия. Передача и распределение, 2021, № 2(65), с. 40–46.
12. Wang X. et al. Grid-Synchronization Stability of Converter-Based Resources—An Overview. – IEEE Open Journal of Industry Applications, 2020, vol. 1, pp. 115–134, DOI: 10.1109/OJIA.2020.3020392.
13. Суворов А.А. и др. Система автоматического управления силовым преобразователем на основе свободно конфигурируемой структуры виртуального синхронного генератора. – Электричество, 2022, № 4, с. 15–26.
14. Liu H. et al. Influence of Virtual Synchronous Generators on Low Frequency Oscillations. – CSEE Journal of Power and Energy Systems, 2022, vol. 8, No. 4, pp. 1029–1038, DOI: 10.17775/CSEEJPES.2020.01700.
15. Du W., Fu Q., Wang H.F. Power System Small-Signal Angular Stability Affected by Virtual Synchronous Generators. – IEEE Transactions on Power Systems, 2019, vol. 34, No. 4, pp. 3209–3219, DOI: 10.1109/TPWRS.2019.2896149.
16. Симонов А.В., Илюшин П.В. О влиянии параметров схемы выдачи мощности ветровых электростанций на показатели качества электроэнергии в распределительных сетях. – Энергетик, 2023, № 6, с. 22–28.
17. Shuai Z. et al. Active Power Oscillation and Suppression Techniques Between Two Parallel Synchronverters During Load Fluctuations. – IEEE Transactions on Power Electronics, 2020, vol. 35, No. 4, pp. 4127–4142, DOI: 10.1109/TPEL.2019.2933628.
18. Meng X., Liu J., Liu Z. A Generalized Droop Control for Grid-Supporting Inverter Based on Comparison Between Traditional Droop Control and Virtual Synchronous Generator Control. – IEEE Transactions on Power Electronics, 2018, vol. 34, No. 6, pp. 5416–5438, DOI: 10.1109/TPEL.2018.2868722.
19. Shintai T., Miura Y., Ise T. Oscillation Damping of a Distributed Generator Using a Virtual Synchronous Generator. – IEEE Transactions on Power Delivery, 2014, vol. 29, No. 2, pp. 668–676, DOI: 10.1109/TPWRD.2013.2281359.
20. Huang L., Xin H., Wang Z. Damping Low-Frequency Oscillations through VSC-HVDC Stations Operated as Virtual Synchronous Machines. – IEEE Transactions on Power Electronics, 2018, vol. 34, No. 6, pp. 5803–5818, DOI: 10.1109/TPEL.2018.2866523.
21. Suul J.A., D’Arco S., Guidi G. Virtual Synchronous Machine-Based Control of a Single-Phase Bi-Directional Battery Charger for Providing Vehicle-to-Grid Services. – IEEE Transactions on Industry Applications, 2016, vol. 52, No. 4, pp. 3234–3244, DOI: 10.1109/TIA.2016.2550588.
22. Tao Y. et al. Evaluation and Comparison of the Low-Frequency Oscillation Damping Methods for the Droop-Controlled Inverters in Distributed Generation Systems. – Journal of Power Electronics, 2016, vol. 16, No. 2, pp. 731–747, DOI: 10.6113/JPE.2016.16.2.731.
23. Natarajan V., Weiss G. Synchronverters with Better Stability Due to Virtual Inductors, Virtual Capacitors, and Anti-Windup. – IEEE Transactions on Industrial Electronics, 2017, vol. 64, No. 7, pp. 5994–6004, DOI: 10.1109/TIE.2017.2674611.
24. Liu J. et al. Enhanced Virtual Synchronous Generator Control for Parallel Inverters in Microgrids. – IEEE Transactions on Smart Grid, 2016, vol. 8, No. 5, pp. 2268–2277, DOI: 10.1109/TSG.2016.2521405.
25. Dong S., Chen Y.C. Adjusting Synchronverter Dynamic Response Speed Via Damping Correction Loop. – IEEE Transactions on Energy Conversion, 2016, vol. 32, No. 2, pp. 608–619, DOI: 10.1109/TEC.2016.2645450.
26. Dong S., Chen Y.C. A method to Directly Compute Synchronverter Parameters for Desired Dynamic Response. – IEEE Transactions on Energy Conversion, 2017, vol. 33, No. 2, pp. 814–825, DOI: 10.1109/TEC.2017.2771401.
27. Liu J., Miura Y., Ise T. Fixed-Parameter Damping Methods of Virtual Synchronous Generator Control Using State Feedback. – IEEE Access, 2019, vol. 7, pp. 99177–99190, DOI: 10.1109/ACCESS.2019.2930132.
28. Chen M., Zhou D., Blaabjerg F. Active Power Oscillation Damping Based on Acceleration Control in Paralleled Virtual Synchronous Generators System. – IEEE Transactions on Power Electronics, 2021, vol. 36, No. 8, pp. 9501–9510, DOI: 10.1109/TPEL.2021.3051272.
29. Yu Y. et al. A Reference-Feedforward-Based Damping Method for Virtual Synchronous Generator Control. – IEEE Transactions on Power Electronics, 2022, vol. 37, No. 7, pp. 7566–7571, DOI: 10.1109/TPEL.2022.3152358.
30. Li M. et al. Phase Feedforward Damping Control Method for Virtual Synchronous Generators. – IEEE Transactions on Power Electronics, 2022, vol. 37, No. 8, pp. 9790–9806, DOI: 10.1109/TPEL.2022.3150950.
31. Суворов А.А. и др. Синтез и тестирование типовых структур систем автоматического управления на основе виртуального синхронного генератора для генерирующих установок с силовым преобразователем. – Электрические станции, 2022, № 3 (1088), с. 43–57.
32. Li X. et al. Mechanism Analysis and Suppression Strategies of Power Oscillation for Virtual Synchronous Generator. – 43rd Annual Conference of the IEEE Industrial Electronics Society, 2017, pp. 4955–4960, DOI: 10.1109/IECON.2017.8216855.
33. Суворов А.А. и др. Управление сетевым инвертором на основе виртуального синхронного генератора при изменении плотности электрической сети. – Электричество, 2023, № 3, с. 35–51.
34. Гаджиев М.Г. и др. Матричные методы анализа и управления переходными процессами в электроэнергетических системах. М.: Издательский дом МЭИ, 2019, 462 с.
35. Yang D. et al. Suppression of Synchronous Resonance for VSGs. – The Journal of Engineering, 2017, vol. 2017, No. 13, pp. 2574–2579, DOI: 10.1049/joe.2017.0792.
36. Dong S., Chen Y.C. Reducing Transient Active- and Reactive-power Coupling in Virtual Synchronous Generators. – IEEE 28th International Symposium on Industrial Electronics, 2019, pp. 1090–1095, DOI: 10.1109/ISIE.2019.8781169.
37. Шалыгин А.С., Санников В.А. Устойчивость динамических систем автоматического управления. СПб.: БГТУ "Военмех" им. Д.Ф. Устинова, 2015, 162 с.
38. D’Arco S., Suul J.A., Fosso O.B. A Virtual Synchronous Machine Implementation for Distributed Control of Power Converters in Smart Grids. – Electric Power Systems Research, 2015, vol. 122, pp. 180–197, DOI: 10.1016/j.epsr.2015.01.001.
39. Рудник В.Е. и др. Исследование функционирования алгоритма синтетической инерции в электроэнергетических системах разной плотности. – iPolytech Journal, 2022, Т. 26, № 3, С. 465–486.
40. Бесекерский В.А., Попов Е.П. Теория систем автоматического управления. СПб.: Профессия, 2003, 752 с.
41. Liu J., Miura Y., Ise T. Comparison of Dynamic Characteristics Between Virtual Synchronous Generator and Droop Control in Inverter-Based Distributed Generators. – IEEE Transactions on Power Electronics, 2016, vol. 31, No. 5, pp. 3600–3611, DOI: 10.1109/TPEL.2015.2465852.
42. Yu Y. et al. A Comparison of Fixed-Parameter Active-Power-Oscillation Damping Solutions for Virtual Synchronous Generators. – 47th Annual Conference of the IEEE Industrial Electronics, 2021, pp. 1–6, DOI: 10.1109/IECON48115.2021.9589433.
43. Dong S., Chen Y.C. Analysis of Feasible Synchronverter Pole-Placement Region to Facilitate Parameter Tuning. – IEEE Transactions on Energy Conversion, 2021, vol. 36, No. 4, pp. 2782–2793, DOI: 10.1109/TEC.2021.3068758.
44. Аскаров А.Б. и др. К вопросу о современных принципах управления возобновляемыми источниками энергии на основе виртуального синхронного генератора. – Вестник Пермского национального исследовательского политехнического университета. Электротехника, информационные технологии, системы управления, 2022, № 41, с. 5–30.
45. Zhao F., Wang X., Zhu T. Power Dynamic Decoupling Control of Grid-Forming Converter in Stiff Grid. – IEEE Transactions on Power Electronics, 2022, vol. 37, No. 8, pp. 9073–9088, DOI: 10.1109/TPEL.2022.3156991.
46. Li M. et al. A Novel Virtual Synchronous Generator Control Strategy Based on Improved Swing Equation Emulating and Power Decoupling Method. – IEEE Energy Conversion Congress and Exposition, 2016, pp. 1–7, DOI: 10.1109/ECCE.2016.7854751
---
Исследование выполнено за счет гранта Российского научного фонда № 22-79-00204
#
1. Elistratov V.V. et al. Elektrichestvo – in Russ. (Electricity), 2022, No. 2, pp. 29–37.
2. Karamov D.N. et al. Energetik – in Russ. (Energetik), 2022, No. 9, pp. 39–49.
3. Rozanov Yu.K. Silovaya elektronika (Power Electronics). M.: Izdatel'stvo MEI, 2018, 508 p.
4. Zhong Q.C. Power-Electronics-Enabled Autonomous Power Systems: Architecture and Technical Routes. – IEEE Transactions on Industrial Electronics, 2017, vol. 64 (7), pp. 5907–5918, DOI: 10.1109/TIE.2017.2677339.
5. Domyshev A.V., Barahtenko E.A., Ilyushin P.V. Elektroenergiya. Peredacha i raspredelenie – in Russ. (Electric Power. Transmission and Distribution), 2023, No. 3(78), pp. 46–56.
6. Strebkov D.S., Shogenov A. Elektricheskie stantsii – in Russ. (Electrical Power Plants), 2017, No. 12(1037), pp. 45–50.
7. Ilyushin P.V. Vestnik MEI – in Russ. (Bulletin of MPEI), 2022, No. 4, pp. 98–107.
8. Suvorov A.A. et al. Elektricheskie stantsii – in Russ. (Electrical Power Plants), 2022, No. 1(1086), pp. 25–37.
9. Dudin R. Elektroenergiya. Peredacha i raspredelenie – in Russ. (Electric Power. Transmission and Distribution), 2022, No. S4(27), pp. 40–44.
10. Razzhivin I.A. et al. Vestnik Irkutskogo gosudarstvennogo tehnicheskogo universiteta – in Russ. (Proceedings of Irkutsk State Technical University), 2021, vol. 25, No. 2(157), pp. 220–234.
11. Sigitov O.Yu., Chemborisova N.Sh., Chernenkov I.D. Elektroenergiya. Peredacha i raspredelenie – in Russ. (Electric Power. Transmission and Distribution), 2021, No. 2(65), pp. 40–46.
12. Wang X. et al. Grid-Synchronization Stability of Converter-Based Resources — An Overview. – IEEE Open Journal of Industry Applications, 2020, vol. 1, pp. 115–134, DOI: 10.1109/OJIA.2020.3020392.
13. Suvorov A.A. et al. Elektrichestvo – in Russ. (Electricity), 2022, No. 4, pp. 15–26.
14. Liu H. et al. Influence of Virtual Synchronous Generators on Low Frequency Oscillations. – CSEE Journal of Power and Energy Systems, 2022, vol. 8, No. 4, pp. 1029–1038, DOI: 10.17775/CSEEJPES.2020.01700.
15. Du W., Fu Q., Wang H.F. Power System Small-Signal Angular Stability Affected by Virtual Synchronous Generators. – IEEE Transactions on Power Systems, 2019, vol. 34, No. 4, pp. 3209–3219, DOI: 10.1109/TPWRS.2019.2896149.
16. Simonov A.V., Ilyushin P.V. Energetik – in Russ. (Energetik), 2023, No. 6, pp. 22–28.
17. Shuai Z. et al. Active Power Oscillation and Suppression Techniques Between Two Parallel Synchronverters During Load Fluctuations. – IEEE Transactions on Power Electronics, 2020, vol. 35, No. 4, pp. 4127–4142, DOI: 10.1109/TPEL.2019.2933628.
18. Meng X., Liu J., Liu Z. A Generalized Droop Control for Grid-Supporting Inverter Based on Comparison Between Traditional Droop Control and Virtual Synchronous Generator Control. – IEEE Transactions on Power Electronics, 2018, vol. 34, No. 6, pp. 5416–5438, DOI: 10.1109/TPEL.2018.2868722.
19. Shintai T., Miura Y., Ise T. Oscillation Damping of a Distributed Generator Using a Virtual Synchronous Generator. – IEEE Transactions on Power Delivery, 2014, vol. 29, No. 2, pp. 668–676, DOI: 10.1109/TPWRD.2013.2281359.
20. Huang L., Xin H., Wang Z. Damping Low-Frequency Oscillations through VSC-HVDC Stations Operated as Virtual Synchronous Machines. – IEEE Transactions on Power Electronics, 2018, vol. 34, No. 6, pp. 5803–5818, DOI: 10.1109/TPEL.2018.2866523.
21. Suul J.A., D’Arco S., Guidi G. Virtual Synchronous Machine-Based Control of a Single-Phase Bi-Directional Battery Charger for Providing Vehicle-to-Grid Services. – IEEE Transactions on Industry Applications, 2016, vol. 52, No. 4, pp. 3234–3244, DOI: 10.1109/TIA.2016.2550588.
22. Tao Y. et al. Evaluation and Comparison of the Low-Frequency Oscillation Damping Methods for the Droop-Controlled Inverters in Distributed Generation Systems. – Journal of Power Electronics, 2016, vol. 16, No. 2, pp. 731–747, DOI: 10.6113/JPE.2016.16.2.731.
23. Natarajan V., Weiss G. Synchronverters with Better Stability Due to Virtual Inductors, Virtual Capacitors, and Anti-Windup. – IEEE Transactions on Industrial Electronics, 2017, vol. 64, No. 7, pp. 5994–6004, DOI: 10.1109/TIE.2017.2674611.
24. Liu J. et al. Enhanced Virtual Synchronous Generator Control for Parallel Inverters in Microgrids. – IEEE Transactions on Smart Grid, 2016, vol. 8, No. 5, pp. 2268–2277, DOI: 10.1109/TSG.2016.2521405.
25. Dong S., Chen Y.C. Adjusting Synchronverter Dynamic Response Speed Via Damping Correction Loop. – IEEE Transactions on Energy Conversion, 2016, vol. 32, No. 2, pp. 608–619, DOI: 10.1109/TEC.2016.2645450.
26. Dong S., Chen Y.C. A method to Directly Compute Synchronverter Parameters for Desired Dynamic Response. – IEEE Transactions on Energy Conversion, 2017, vol. 33, No. 2, pp. 814–825, DOI: 10.1109/TEC.2017.2771401.
27. Liu J., Miura Y., Ise T. Fixed-Parameter Damping Methods of Virtual Synchronous Generator Control Using State Feedback. – IEEE Access, 2019, vol. 7, pp. 99177–99190, DOI: 10.1109/ACCESS.2019.2930132.
28. Chen M., Zhou D., Blaabjerg F. Active Power Oscillation Damping Based on Acceleration Control in Paralleled Virtual Synchronous Generators System. – IEEE Transactions on Power Electronics, 2021, vol. 36, No. 8, pp. 9501–9510, DOI: 10.1109/TPEL.2021.3051272.
29. Yu Y. et al. A Reference-Feedforward-Based Damping Method for Virtual Synchronous Generator Control. – IEEE Transactions on Power Electronics, 2022, vol. 37, No. 7, pp. 7566–7571, DOI: 10.1109/TPEL.2022.3152358.
30. Li M. et al. Phase Feedforward Damping Control Method for Virtual Synchronous Generators. – IEEE Transactions on Power Electronics, 2022, vol. 37, No. 8, pp. 9790–9806, DOI: 10.1109/TPEL.2022.3150950.
31. Suvorov A.A. et al. Elektricheskie stantsii – in Russ. (Electrical Power Plants), 2022, No. 3(1088), pp. 43–57.
32. Li X. et al. Mechanism Analysis and Suppression Strategies of Power Oscillation for Virtual Synchronous Generator. – 43rd Annual Conference of the IEEE Industrial Electronics Society, 2017, pp. 4955–4960, DOI: 10.1109/IECON.2017.8216855.
33. Suvorov A.A. et al. Elektrichestvo – in Russ. (Electricity), 2023, No. 3, pp. 35–51.
34. Gadzhiev M.G. et al. Matrichnye metody analiza i upravle-niya perekhodnymi protsessami v elektroenergeticheskikh sistemakh (Matrix Methods of Analysis and Transients Control in Electric Power Systems). M.: Izdatel'skiy dom MEI, 2019, 462 p.
35. Yang D. et al. Suppression of Synchronous Resonance for VSGs. – The Journal of Engineering, 2017, vol. 2017, No. 13, pp. 2574–2579, DOI: 10.1049/joe.2017.0792.
36. Dong S., Chen Y.C. Reducing Transient Active- and Reactive-power Coupling in Virtual Synchronous Generators. – IEEE 28th International Symposium on Industrial Electronics, 2019, pp. 1090–1095, DOI: 10.1109/ISIE.2019.8781169.
37. Shalygin A.S., Sannikov V.A. Ustoychivost' dinamicheskikh sistem avtomaticheskogo upravleniya (Stability of Dynamic Automatic Control Systems). SPb.: BGTU "Voenmekh" im. D.F. Ustinova, 2015, 162 p.
38. D’Arco S., Suul J.A., Fosso O.B. A Virtual Synchronous Machine Implementation for Distributed Control of Power Converters in Smart Grids. – Electric Power Systems Research, 2015, vol. 122, pp. 180–197, DOI: 10.1016/j.epsr.2015.01.001.
39. Rudnik V.E. et al. iPolytech Journal, 2022, vol. 26, No. 3, pp. 465–486.
40. Besekerskii V.A., Popov E.P. (Theory of automatic control systems). SPb.: Professiya, 2003, 752 p.
41. Liu J., Miura Y., Ise T. Comparison of Dynamic Characteristics Between Virtual Synchronous Generator and Droop Control in Inverter-Based Distributed Generators. – IEEE Transactions on Power Electronics, 2016, vol. 31, No. 5, pp. 3600–3611, DOI: 10.1109/TPEL.2015.2465852.
42. Yu Y. et al. A Comparison of Fixed-Parameter Active-Power-Oscillation Damping Solutions for Virtual Synchronous Generators. – 47th Annual Conference of the IEEE Industrial Electronics, 2021, pp. 1–6, DOI: 10.1109/IECON48115.2021.9589433.
43. Dong S., Chen Y.C. Analysis of Feasible Synchronverter Pole-Placement Region to Facilitate Parameter Tuning. – IEEE Transactions on Energy Conversion, 2021, vol. 36, No. 4, pp. 2782–2793, DOI: 10.1109/TEC.2021.3068758.
44. Askarov A.B. et al. Vestnik Permskogo natsional'nogo issledovatel'skogo politekhnicheskogo universiteta. Elektrotekhnika, informatsionnye tekhnologii, sistemy upravleniya – in Russ. (Perm National Research Polytechnic University Bulletin. Electrotechnics, Informational Technologies, Control Systems), 2022, No. 41, pp. 5–30.
45. Zhao F., Wang X., Zhu T. Power Dynamic Decoupling Control of Grid-Forming Converter in Stiff Grid. – IEEE Transactions on Power Electronics, 2022, vol. 37, No. 8, pp. 9073–9088, DOI: 10.1109/TPEL.2022.3156991.
46. Li M. et al. A Novel Virtual Synchronous Generator Control Strategy Based on Improved Swing Equation Emulating and Power Decoupling Method. – IEEE Energy Conversion Congress and Exposition, 2016, pp. 1–7, DOI: 10.1109/ECCE.2016.7854751
---
The study was financially supported by the Russian Science Foundation, grant no. 22-79-00204
Published
2023-11-30
Section
Article