The Coupling Coefficient of Disk Coils for Contactless Power Transfer

  • Georgiy N. TSITSIKYAN
  • Mikhail Yu. ANTIPOV
  • Vladislav V. GRIGOR'EV
Keywords: contactless power transfer, coupling coefficient, disk coil, square coil, mutual inductance, rectangular turns

Abstract

The coupling coefficient is a key characteristic of contactless power transfer, inductive coupling being one of its forms, and serves as a measure of its effectiveness. Matters concerned with studying the effect the coil geometry has on the coupling coefficient assessment are considered. An expression for the coupling coefficient of disk coils and coils of a rectangular cross-section is obtained, and relevant comparisons are given. The geometry of matched rectangular coils is considered, by which the mutual induction coefficient is determined for middle turns with subsequent assessment of the mutual inductance of coils as a whole. It has been found that the real coil geometry may have an essential influence on the coupling coefficient assessment in comparison with that for a coil with idealized turns.

Author Biographies

Georgiy N. TSITSIKYAN

(Branch "Central Research Institute of Marine Electrical Engineering and Technology", FSUE "Krylovsky State Scientific Center", St. Petersburg, Russia) – Head of the Sector, Deputy Head of the Electric Power Systems Dept., Dr. Sci. (Eng.), Professor.

Mikhail Yu. ANTIPOV

Branch "Central Research Institute of Marine Electrical Engineering and Technology", FSUE "Krylovsky State Scientific Center", St. Petersburg, Russia) – Lead Engineer of the Electric Power Systems Dept.

Vladislav V. GRIGOR'EV

Branch "Central Research Institute of Marine Electrical Engineering and Technology", FSUE "Krylovsky State Scientific Center", St. Petersburg, Russia) – Head of Sector of the Electric Power Systems Dept.

References

1. Hirai J., Kim T.-W., Kawamura A. Study on Intelligent Battery Charging Using Inductive Transmission of Power and Information. – IEEE Transactions on Power Electronics, 2000, vol. 15(2), pp. 335–345, DOI: 10.1109/63.838106.
2. Boys J.T., Elliott G.A.J., Covic G.A. An Appropriate Magnetic Coupling Co-Efficient for the Design and Comparison of ICPT Pickups. – IEEE Transactions on Power Electronics, 2007, vol. 22, No. 1, pp. 333–335, DOI: 10.1109/TPEL.2006.887590.
3. Lee S.-H., Lorenz R.D. Development and Validation of Model for 95 % Efficiency, 220 W Wireless Power Transfer over a 30 cm Air-Gap. – IEEE Transactions on Industry Applications, 2011, vol. 47 (6), pp. 885–892, DOI: 10.1109/ECCE.2010.5617901.
4. Bosshard R., Kolar J.W. Inductive Power Transfer for Electric Vehicle Charging: Technical Challenges and Tradeoffs. – IEEE Power Electronics Magazine, 2016, vol. 3(3), pp. 22–30, DOI:10.1109/MPEL.2016.2583839.
5. Guidi G. et al. Wireless Charging for Ships: High-Power Inductive Charging for Battery Electric and Plug-In Hybrid Vessels. – IEEE Electrification Magazine, 2017, vol. 5(3), pp. 22–32, DOI: 10.1109/MELE.2017.2718829.
6. Герасимов В.А., Комлев А.В., Филоженко А.Ю. Новая методика расчета силового трансформатора для системы бесконтактного заряда аккумуляторных батарей подводного робота. – Труды Крыловского государственного научного центра, 2022, т. 2, № 400, с. 116–126.
7. Pedder D.A.G., Brown A.D., Skinner J.A. A Contactless Electrical Energy Transmission System. – IEEE Transactions on Industrial Electronics, 1999, vol. 46, No. 1, pp. 23–30, DOI: 10.1109/41.744372.
8. Abe H., Sakamoto H., Harada K. A Noncontact Charger Using a Resonant Converter with Parallel Capacitor of the Secondary Coil. – 13th Annual Applied Power Electronics Conference and Exposition, 1998, vol.1, pp. 136–141, DOI: 10.1109/APEC.1998.647681.
9. Jang Y., Jovanovic M.M. Contactless Electrical Energy Transmission System for Portable-Telephone Battery Chargers. – IEEE Transactions on Industrial Electronics. 2003, vol. 50, pp. 520–527, DOI: 10.1109/TIE.2003.812472.
10. Joung G.B., Cho B.H. An Energy Transmission System for an Artificial Heart Using Leakage Inductance Compensation of Transcutaneous Transformer. – PESC Record, 27th Annual IEEE Power Electronics Specialists Conference, 1996, vol. 1, pp. 898–904, DOI: 10.1109/PESC.1996.548688.
11. Нейман Л.Р., Демирчян К.С. Теоретические основы электротехники: т. 1. Л.: Энергоиздат, 1981, 538 с.
12. Цицикян Г.Н., Кунаев С.Н. Электродинамические силы между соосными плоскими катушками круговой формы. – Труды Крыловского государственного научного центра, 2022, т. 4, № 402, с. 109–114.
13. Калантаров П.Л. Цейтлин Л.А. Расчет индуктивностей. Справочная книга. Л.: Энергоатомиздат, 1986, 488 с.
14. Frederick W.G. Inductance Calculations: Working Formulas and Tables. – VAN Nostrand. New-York, 1947, 286 p.
15. Wang C.-S., Stielau O.H., Covic G.A. Design Considerations for a Contactless Electric Vehicle Battery Charger. – IEEE Transactions on Industrial Electronics, 2005, vol. 52, No. 5, pp. 1308–1314, DOI: 10.1109/TIE.2005.855672.
16. Цицикян Г.Н., Антипов М.Ю. Строгие и аппроксимирующие выражения для индуктивностей соленоидов круговой и квадратной формы. – Электричество, 2020, №2, с. 35–41.
#
1. Hirai J., Kim T.-W., Kawamura A. Study on Intelligent Battery Charging Using Inductive Transmission of Power and Information. – IEEE Transactions on Power Electronics, 2000, vol. 15(2), pp. 335–345, DOI: 10.1109/63.838106.
2. Boys J.T., Elliott G.A.J., Covic G.A. An Appropriate Magnetic Coupling Co-Efficient for the Design and Comparison of ICPT Pickups. – IEEE Transactions on Power Electronics, 2007, vol. 22, No. 1, pp. 333–335, DOI: 10.1109/TPEL.2006.887590.
3. Lee S.-H., Lorenz R.D. Development and Validation of Model for 95 % Efficiency, 220 W Wireless Power Transfer over a 30 cm Air-Gap. – IEEE Transactions on Industry Applications, 2011, vol. 47 (6), pp. 885–892, DOI: 10.1109/ECCE.2010.5617901.
4. Bosshard R., Kolar J.W. Inductive Power Transfer for Electric Vehicle Charging: Technical Challenges and Tradeoffs. – IEEE Power Electronics Magazine, 2016, vol. 3(3), pp. 22–30, DOI:10.1109/MPEL.2016.2583839.
5. Guidi G. et al. Wireless Charging for Ships: High-Power Inductive Charging for Battery Electric and Plug-In Hybrid Vessels. – IEEE Electrification Magazine, 2017, vol. 5(3), pp. 22–32, DOI: 10.1109/MELE.2017.2718829.
6. Gerasimov V.A., Komlev A.V., Filozhenko A.Yu. Trudy Krylovskogo gosudarstvennogo nauchnogo tsentra – in Russ. (Proceedings of the Krylov State Scientific Center), 2022, vol. 2, No. 400, pp. 116–126.
7. Pedder D.A.G., Brown A.D., Skinner J.A. A Contactless Electrical Energy Transmission System. – IEEE Transactions on Industrial Electronics, 1999, vol. 46, No. 1, pp. 23–30, DOI: 10.1109/41.744372.
8. Abe H., Sakamoto H., Harada K. A Noncontact Charger Using a Resonant Converter with Parallel Capacitor of the Secondary Coil. – 13th Annual Applied Power Electronics Conference and Exposition, 1998, vol.1, pp. 136–141, DOI: 10.1109/APEC.1998.647681.
9. Jang Y., Jovanovic M.M. Contactless Electrical Energy Transmission System for Portable-Telephone Battery Chargers. – IEEE Transactions on Industrial Electronics. 2003, vol. 50, pp. 520–527, DOI: 10.1109/TIE.2003.812472.
10. Joung G.B., Cho B.H. An Energy Transmission System for an Artificial Heart Using Leakage Inductance Compensation of Transcutaneous Transformer. – PESC Record, 27th Annual IEEE Power Electronics Specialists Conference, 1996, vol. 1, pp. 898–904, DOI: 10.1109/PESC.1996.548688.
11. Neyman L.R., Demirchyan K.S. Teoreticheskie osnovy elektrotekhniki (Theoretical Foundations of Electrical Engineering): vol. 1. L.: Energoizdat, 1981, 538 p.
12. Tsitsikyan G.N., Kunaev S.N. Trudy Krylovskogo gosudarstvennogo nauchnogo tsentra – in Russ. (Proceedings of the Krylov State Scientific Center), 2022, vol. 4, No. 402, pp. 109–114.
13. Kalantarov P.L. Tseytlin L.A. Raschet induktivnostey. Spravochnaya kniga (Calculation of Inductances. The Reference Book). L.: Energoatomizdat, 1986, 488 p.
14. Frederick W.G. Inductance Calculations: Working Formulas and Tables. – VAN Nostrand. New-York, 1947, 286 p.
15. Wang C.-S., Stielau O.H., Covic G.A. Design Considerations for a Contactless Electric Vehicle Battery Charger. – IEEE Transacti-ons on Industrial Electronics, 2005, vol. 52 (5), pp. 1308–1314, DOI: 10.1109/TIE.2005.855672.
16. Tsitsikyan G.N., Antipov M.Yu. Elektrichestvo – in Russ. (Electricity), 2020, No. 2, pp. 35–41
Published
2023-11-30
Section
Article