Identification of Lightning Discharge Parameters by Its Effect on Fiber-Optic Communication Lines
Abstract
The article addresses a study of the effect electrically active negative-polarity thunderstorm clouds and the parameters of discharges from them have on the signal transmitted via a fiber-optic cable. By using the GROZA (THUNDERSTORM) experimental-and-measurement system, which has means to produce artificial clouds of charged water aerosol, a thunderstorm activity was physically simulated. Fiber-optic cables of several types (fully dielectric and armored), through which linearly polarized radiation was transmitted, were considered as objects of research. During the study, the cable position with respect to the discharge place was varied. It has been revealed that the amplitude of rapid changes in the power of the optical signal transmitted via a fully dielectric optical cable tends to grow with increasing the discharge current amplitude from an artificial thunderstorm cloud near the cable. A dependence of slow variations in the power of the signal transmitted via a fully dielectric cable on variations in the electric field induced by an artificial thunderstorm cloud has been established. A relationship between the parameters of the transmitted optical signal and variations in the electromagnetic field near it caused by thunderstorm activity is shown. The results obtained have shown the possibility of further development of thunderstorm activity direction-finding techniques and identification of lightning discharge parameters using a network containing fiber-optic lines of various types.
References
2. Prabakar K., Karady G.G. Design of an All-Dielectric Self-Supporting Cable System. – International Conference on High Voltage Engineering and Application, 2010, pp. 184–187, DOI: 10.1109/ICHVE.2010.5640833.
3. Листвин А.В., Листвин В.Н., Швырков Д.В. Оптические волокна для линий связи. М.: ЛЕСАР арт, 2003, 288 с.
4. Фитель В.В., Постников Е.А. Система для организации безопасности при взрывных работах на карьере на основе волоконно-оптического датчика движения. – Наука. Образование. Инновации: современное состояние актуальных проблем, 2023, с. 55–59.
5. Ландсберг Г.С. Оптика. М.: Физматлит, 2003, 848 с.
6. Соколов С.А. Воздействие внешних электромагнитных полей на оптические кабели связи и гибридные линии. М.: Горячая линия-Телеком, 2018, 214 с.
7. Kaijing Hu et al. Model and Experimental Verification of SOP Transient in OPGW Based on Direct Strike Lightning. – Opt. Express, 2023, 31(23), pp. 39102-39120, DOI: 10.1364/OE.502978.
8. Sun J. et al. Analytical Investigation of Lightning Strike-Induced Damage of OPGWs Based on a Coupled Arc-Electrical-Thermal Simulation. – IEEE Transactions on Power Delivery, 2022, vol. 37, No. 6, pp. 5145–5155, DOI: 10.1109/TPWRD.2022.3171783.
9. Gorbatov D.V. et al. Polarization Changes during a Lightning Strike: Isotropic Zones of Anisotropic Optical Fiber. – Bulletin of the Lebedev Physics Institute, 2023, 50 (S2), pp. S204–S212, DOI:10.3103/S1068335623140075.
10. Gorbatov D.V. et al. Effect of Anisotropy of a Single-Mode Fibre on Lightning-Induced Rotation of Polarisation of a Light Signal in an Optical Ground Wire. – Quantum Electronics, 2022, vol. 52(1), pp. 87–93, DOI:10.1070/QEL17970.
11. Lu L. et al. Experimental Study on Location of Lightning Stroke on OPGW by Means of a Distributed Optical Fiber Temperature Sensor. – Optics & Laser Technology, 2015, vol. 65, pp. 79–82, DOI:10. 1016/j.optlastec.2014.07.007.
12. Huang S. et al. Transmission Line Lightning Monitoring System Using a Multiparameter Distributed Optical Fiber Sensor. – IEEE 2nd China International Youth Conference on Electrical Engineering (CIYCEE), 2021, DOI: 10.1109/CIYCEE53554.2021.9676793.
13. Feng X. et al. Research on Optical Fiber Composite Overhead Wire (OPGW) Lightning Monitoring Technology Based on Weak Fiber Bragg Grating Array. – Journal of Nanoelectronics and Optoelectronics, 2022, vol. 17, No. 1, pp. 170–176, DOI: 10.1166/jno.2022.3182.
14. Lysov N. et al. Physical Modeling of Positive Multistrike Lightning Formation. – Atmosphere, 2022, vol. 14, No. 1, DOI: 10.3390/atmos14010010.
15. Temnikov A. et al. Peculiarities of spectrum of electromagnetic signals induced by discharges from artificial thunderstorm cell. – Journal of Electrostatics, 2022, vol. 115, No. 4:103660, DOI: 10.1016/j.elstat.2021.103660.
16. Belova O.S. et al. Experimental Study of the Effect of Electric Fields of Thunderclouds on Fiber-Optic Communication Lines. – Bulletin of the Lebedev Physics Institute, 2023, vol. 50, No. 10, pp. 429–433, DOI:10.3103/S1068335623100032
---
Исследование выполнено за счет гранта Российского научного фонда № 23-79-10223, https://rscf.ru/project/23-79-10223.
#
1. Sasaki T., Hasegawa T., Ishikawa H. Optical Fiber and Cables. – Springer Handbook of Optical Networks. Springer Handbooks, 2020, pp. 25–49, DOI:10.1007/978-3-030-16250-4_2.
2. Prabakar K., Karady G.G. Design of an All-Dielectric Self-Supporting Cable System. – International Conference on High Voltage Engineering and Application, 2010, pp. 184–187, DOI: 10.1109/ICHVE.2010.5640833.
3. Listvin A.V., Listvin V.N., Shvyrkov D.V. Opticheskie volokna dlya liniy svyazi (Optical Fibers for Communication Lines). M.: LESAR art, 2003, 288 p.
4. Fitel' V.V., Postnikov Е.А. Nauka. Obrazovanie. Innovatsii: sovremennoe sostoyanie aktual'nyh problem – in Russ. (Science. Education. Innovations: The Current State of Current Problems), 2023, pp. 55–59.
5. Landsberg G.S. Optika (Optics). M.: Fizmatlit, 2003, 848 p.
6. Sokolov S.A. Vozdeystvie vneshnih elektromagnitnyh poley na opticheskie kabeli svyazi i gibridnye linii (The Effect of External Electromagnetic Fields on Optical Communication Cables and Hybrid Lines). M.: Goryachaya liniya-Telekom, 2018, 214 p.
7. Kaijing Hu et al. Model and Experimental Verification of SOP Transient in OPGW Based on Direct Strike Lightning. – Opt. Express, 2023, 31(23), pp. 39102-39120, DOI: 10.1364/OE.502978.
8. Sun J. et al. Analytical Investigation of Lightning Strike-Induced Damage of OPGWs Based on a Coupled Arc-Electrical-Thermal Simulation. – IEEE Transactions on Power Delivery, 2022, vol. 37, No. 6, pp. 5145–5155, DOI: 10.1109/TPWRD.2022.3171783.
9. Gorbatov D.V. et al. Polarization Changes during a Lightning Strike: Isotropic Zones of Anisotropic Optical Fiber. – Bulletin of the Lebedev Physics Institute, 2023, 50 (S2), pp. S204–S212, DOI:10.3103/S1068335623140075.
10. Gorbatov D.V. et al. Effect of Anisotropy of a Single-Mode Fibre on Lightning-Induced Rotation of Polarisation of a Light Signal in an Optical Ground Wire. – Quantum Electronics, 2022, vol. 52(1), pp. 87–93, DOI:10.1070/QEL17970.
11. Lu L. et al. Experimental Study on Location of Lightning Stroke on OPGW by Means of a Distributed Optical Fiber Temperature Sensor. – Optics & Laser Technology, 2015, vol. 65, pp. 79–82, DOI:10.1016/j.optlastec.2014.07.007.
12. Huang S. et al. Transmission Line Lightning Monitoring System Using a Multiparameter Distributed Optical Fiber Sensor. – IEEE 2nd China International Youth Conference on Electrical Engine-ering (CIYCEE), 2021, DOI: 10.1109/CIYCEE53554.2021.9676793.
13. Feng X. et al. Research on Optical Fiber Composite Overhead Wire (OPGW) Lightning Monitoring Technology Based on Weak Fiber Bragg Grating Array. – Journal of Nanoelectronics and Optoelectronics, 2022, vol. 17, No. 1, pp. 170–176, DOI: 10.1166/jno.2022.3182.
14. Lysov N. et al. Physical Modeling of Positive Multistri-ke Lightning Formation. – Atmosphere, 2022, vol. 14, No. 1, DOI: 10.3390/atmos14010010.
15. Temnikov A. et al. Peculiarities of spectrum of electromagnetic signals induced by discharges from artificial thunderstorm cell. – Journal of Electrostatics, 2022, vol. 115, No. 4:103660, DOI: 10.1016/j.elstat.2021.103660.
16. Belova O.S. et al. Experimental Study of the Effect of Electric Fields of Thunderclouds on Fiber-Optic Communication Lines. – Bulletin of the Lebedev Physics Institute, 2023, vol. 50, No. 10, pp. 429–433, DOI:10.3103/S1068335623100032.
---
The research was financially supported by the Russian Science Foundation, grant no. 23-79-10223, https://rscf.ru/project/23-79-10223