Analyzing Possible Relative Positions of a Two-jet Arc Plasma Torch and the Heated Metal Workpiece

  • Yuriy K. PETRENYA
  • Vladimir Ya. FROLOV
  • Dmitriy V. IVANOV
  • Sergey G. ZVEREV
  • Boris A. YUSHIN
Keywords: 3D model, two-jet arc plasma torch, additive technologies, spherically shaped metal powders, centrifugal sputtering

Abstract

The article considers mathematical modeling of the plasma-assisted centrifugal sputtering of a heated workpiece, commonly known as the plasma rotating electrode process (PREP), for producing spherically shaped metal powders, which are used as raw material for additive technologies. A two-jet plasma torch is used as a thermal energy source generating transferred electric arc that closes through a rotating metal workpiece. A newly developed 3D stationary mathematical model of the plasma processes considered is described, including the model assumptions, basic equations, and boundary conditions. A polygonal mesh is used for computations; examples of the meshes used are shown. The computations were carried out for five different cases of the mutual position of a two-jet arc plasma torch and the heated metal workpiece. The article presents the simulation results, including those in distributed and integral forms. An analysis of the results obtained is carried out, and recommendations for choosing the mutual position of the two-jet plasma torch and heated workpiece in which the most effective heating conditions take place have been formulated.

Author Biographies

Yuriy K. PETRENYA

(Peter the Great St. Petersburg Polytechnic University, St. Petersburg, Russia) –Professor of the Higher School of Power Engineering, Corresponding Member of RAS, Dr. Sci. (Phys.-Math.), Professor.

Vladimir Ya. FROLOV

(Peter the Great St. Petersburg Polytechnic University, St. Petersburg, Russia) – Professor of the Higher School of Electric Power Systems, Dr. Sci. (Eng.), Professor.

Dmitriy V. IVANOV

(Peter the Great St. Petersburg Polytechnic University, St. Petersburg, Russia) – Docent of the Higher School of Electric Power Systems, Cand. Sci. (Eng.), Docent.

Sergey G. ZVEREV

(Peter the Great St. Petersburg Polytechnic University, St. Petersburg, Russia) – Director of the Higher School of Electric Power Systems, Cand. Sci. (Eng.), Docent.

Boris A. YUSHIN

(Peter the Great St. Petersburg Polytechnic University, St. Petersburg, Russia) – Docent of the Higher School of Electric Power Systems, Cand. Sci. (Eng.).

References

1. Чередниченко В.С., Кузьмин М.Г., Аньшаков А.С. Плазменные электротехнологические установки. М.: ИНФРА-М, 2020, 601 с.
2. Фролов В.Я. и др. Техника и технологии нанесения покрытий. СПб.: Изд-во политехи, ун-та, 2008, 387 с.
3. Boulos M.I., Fauchais P.L., Pfender E. Handbook of Thermal Plasmas. – Springer International Publishing, 2023, 1973 p.
4. Megy S. et al. Characterization of a Twin-Torch Transferred DC Arc. – Plasma Chem. Plasma Process., 1995, vol. 15, pp. 309–331.
5. Сафронов А.А. и др. Исследование работы высоковольтных плазмотронов со стержневыми электродами. – Теплофизика высоких температур, 2018, т. 56, № 6, с. 926–931.
6. Рутберг Ф.Г. и др. Многофазные электродуговые плазмотроны переменного тока для плазменных технологий. – Теплофизика высоких температур, 2006, т. 44, № 2, с. 205–211.
7. Рутберг Ф.Г. и др. Плазмотроны переменного тока со стержневыми электродами мощностью от 5 до 50 кВт для плазмохимических приложений. – Известия вузов. Физика, 2007, т. 50, № 9-2, с. 77–79.
8. Rehmet C. et al. Unsteady State Analysis of Free-Burning Arcs in a 3-Phase AC Plasma Torch: Comparison between Parallel and Coplanar Electrode Configurations. – Plasma Sources Science and Technology, 2014, vol. 23(6), DOI: 10.1088/0963-0252/23/6/065011.
9. Rehmet C. et al. A Comparison between MHD Modeling and Experimental Results in a 3-Phase AC Arc Plasma Torch: Influence of the Electrode Tip Geometry. – Plasma Chemistry and Plasma Processing, 2014, vol. 34(4), pp. 975–996, DOI:10.1007/s11090-014-9536-2.
10. Fulcheri L. et al. Three-Phase AC Arc Plasma Systems: A Review. – Plasma Chemistry and Plasma Processing, 2015, vol. 35, pp. 565–585.
11. Двухструйный дуговой плазмотрон «Факел» [Электрон. ресурс], URL: https://www.vmk.ru/product/istochnik_vozbuzhdeniya_spektra/plazmotron-fakel.html (дата обращения 10.10.2023).
12. Pat. US3099041A. Method and Apparatus for Making Powders / A.R. Kaufman, 1963.
13. Abkowitz S. A New Way to Make Titanium Alloys and Composites. – Met. Progr., 1966, vol. 89, pp. 62–65.
14. Abkowitz S. Micro-Quenched Age-Formed Titanium Al-loys and Titanium bi-Alloy Composites. – J. Met., 1966, vol, 18, pp. 458–464, DOI:10.1007/BF03378426Corpus.
15. Zdujić M., Uskoković D. Production of Atomized Metal and Alloy Powders by the Rotating Electrode Process. – Powder Metallurgy and Metal Ceramics, 1990, vol. 29(9), pp. 673–683, DOI:10.1007/BF00795571.
16. Mohanty T. et al. Arc Plasma Assisted Rotating Electrode Process for Preparation of Metal Pebbles. – International Symposium on Discharges and Electrical Insulation in Vacuum (ISDEIV), 2014, pp. 741–744, DOI:10.1109/DEIV.2014.6961789.
17. Zhao Y. et al. Centrifugal Granulation Behavior in Metallic Powder Fabrication by Plasma Rotating Electrode Process. – Scientific Reports, 2020, 10 (18446), DOI:10.1038/s41598-020-75503-w.
18. Пат. RU2769116C1. Способ получения металлического порошка / В.Я. Фролов, Б.А. Юшин, А.А. Кадыров, 2022.
19. Kadyrov A.A., Yushin B.A., Frolov V.Ya. Development of Plasma Technology for Metal Powders Used in Additive Technologies. – Journal of Physics Conference Series, 1753(1): 012019, DOI:10. 1088/1742-6596/1753/1/012019.
20. Кадыров А.А. Разработка плазменной технологии для получения металлических порошков, используемых в аддитивных технологиях: дис. … канд. техн. наук. СПб., 2021, 116 с.
21. Trelles J. et al. Arc Plasma Torch Modeling. – Journal of Thermal Spray Technology, 2009, vol. 18(5), pp. 728–752, DOI:10.1007/s11666-009-9342-1.
22. Murphy A.B. A Perspective on Arc Welding Research: The Importance of the Arc, Unresolved Questions and Future Directions. – Plasma Chemistry and Plasma Processing, 2015, vol. 35(3), pp. 471–489, DOI:10.1007/s11090-015-9620-2.
23. Baeva M. et al. Novel Non-Equilibrium Modelling of a DC Electric Arc in Argon. – Journal of Physics D: Applied Physics, 2016, vol. 49(24), DOI:10.1088/0022-3727/49/24/245205.
24. Tanaka Ya., Fujino T., Iwao T. Review of Thermal Plasma Simulation Technique. – IEEJ Transactions on Electrical and Electronic Engineering, 2019, vol. 14(11), pp. 1582–1594, DOI:10.1002/tee.23040.
25. Gonzalez J.J., Freton P., Gleizes A. Comparisons between Two- and Three-Dimensional Models: Gas Injection and Arc Attachment. – Journal of Physics D: Applied Physics, 2002, vol. 35(24), pp. 3181–3191, DOI:10.1088/0022-3727/35/24/306.
26. Colombo V. et al. 3D Static and Time-Dependent Modelling of a DC Transferred Arc Twin Torch System. – Journal of Physics D: Applied Physics, 2011, vol. 44(19), DOI: 10.1088/0022-3727/44/19/194005.
27. Boselli M., Gherardi M., Colombo V. 3D Modelling of the Synthesis of Copper Nanoparticles by Means of a DC Transferred Arc Twin Torch Plasma System. – Journal of Physics D: Applied Physics, 2019, vol. 52(44), DOI:10.1088/1361-6463/ab3607.
28. Tang K.M. et al. Three-Dimensional Modelling of a DC Arc Plasma in a Twin-Torch System. – Journal of Physics D: Applied Physics, 2010, vol. 43(34), DOI:10.1088/0022-3727/43/34/345201.
29. Фролов В.Я., Иванов В.Н., Иванов Д.В. Математические модели плазменных электротехнологических процессов. – Электричество, 2018, № 7, с. 54–60.
30. Дресвин С.В., Иванов Д.В. Физика плазмы. СПб.: Изд-во Политехн. ун-та, 2013, 542 с.
31 Энгельшт В.С. и др. Низкотемпературная плазма. Т. 1. Теория столба электрической дуги. Новосибирск: Наука, 1990, 380 с.
32. Иванов Д.В., Зверев С.Г. 3D Model of Plasma Processes in Radio Frequency Inductively Coupled Plasma Torch of 30 kW, 5.28 MHz for Powder Treatment. – Вестник Башкирского университета, 2023, т. 28, № 3, с. 222–229.
---
Работа выполнена в рамках исследований по государственному заданию Министерства науки и высшего образования Российской Федерации (тема FSEG-2023-0012).
#
1. Cherednichenko V.S., Kuz'min M.G., An'shakov A.S. Plazmennye elektrotekhnologicheskie ustanovki (Plasma Electrotechnological Installations). M.: INFRA-M, 2020, 601 p.
2. Frolov V.Ya. et al. Tekhnika i tekhnologii naneseniya pokrytiy (Coating Techniques and Technologies). SPb.: Izd-vo politekhi, un-ta, 2008, 387 p.
3. Boulos M.I., Fauchais P.L., Pfender E. Handbook of Thermal Plasmas. – Springer International Publishing, 2023, 1973 p.
4. Megy S. et al. Characterization of a Twin-Torch Transferred DC Arc. – Plasma Chem. Plasma Process., 1995, vol. 15, pp. 309–331.
5. Safronov А.А. et al. Teplofizika vysokikh temperatur – in Russ. (High Temperature Thermophysics), 2018, vol. 56, No. 6, pp. 926–931.
6. Rutberg F.G. et al. Teplofizika vysokikh temperatur – in Russ. (High Temperature Thermophysics), 2006, vol. 44, No. 2, pp. 205–211.
7. Rutberg F.G. et al. Izvestiya vuzov. Fizika – in Russ. (News of Universities. Physics), 2007, vol. 50, No. 9-2, pp. 77–79.
8. Rehmet C. et al. Unsteady State Analysis of Free-Burning Arcs in a 3-Phase AC Plasma Torch: Comparison between Parallel and Coplanar Electrode Configurations. – Plasma Sources Science and Technology, 2014, vol. 23(6), DOI: 10.1088/0963-0252/23/6/065011.
9. Rehmet C. et al. A Comparison between MHD Modeling and Experimental Results in a 3-Phase AC Arc Plasma Torch: Influence of the Electrode Tip Geometry. – Plasma Chemistry and Plasma Processing, 2014, vol. 34(4), pp. 975–996, DOI:10.1007/s11090-014-9536-2.
10. Fulcheri L. et al. Three-Phase AC Arc Plasma Systems: A Review. – Plasma Chemistry and Plasma Processing, 2015, vol. 35, pp. 565–585.
11. Dvuhstruynyy dugovoy plazmotron «FakeL» (Two-jet arc plasma torch "Torch") [Electron. resource], URL: https://www.vmk.ru/product/istochnik_vozbuzhdeniya_spektra/plazmotron-fakel.html (Date of appeal 10.10.2023).
12. Pat. US3099041A. Method and Apparatus for Making Powders / A.R. Kaufman, 1963.
13. Abkowitz S. A New Way to Make Titanium Alloys and Composites. – Met. Progr., 1966, vol. 89, pp. 62–65.
14. Abkowitz S. Micro-Quenched Age-Formed Titanium Alloys and Titanium bi-Alloy Composites. – J. Met., 1966, vol, 18, pp. 458–464, DOI:10.1007/BF03378426Corpus.
15. Zdujić M., Uskoković D. Production of Atomized Metal and Alloy Powders by the Rotating Electrode Process. – Powder Metallurgy and Metal Ceramics, 1990, vol. 29(9), pp. 673–683, DOI:10.1007/BF00795571.
16. Mohanty T. et al. Arc Plasma Assisted Rotating Electrode Process for Preparation of Metal Pebbles. – International Symposium on Discharges and Electrical Insulation in Vacuum (ISDEIV), 2014, pp. 741–744, DOI:10.1109/DEIV.2014.6961789.
17. Zhao Y. et al. Centrifugal Granulation Behavior in Metallic Powder Fabrication by Plasma Rotating Electrode Process. – Scientific Reports, 2020, 10 (18446), DOI:10.1038/s41598-020-75503-w.
18. Pаt. RU2769116C1. Sposob polucheniya metallicheskogo poroshka (Method of Obtaining Metal Powder) / V.Ya. Frolov, B.A. Yushin, A.A. Kadyrov, 2022.
19. Kadyrov A.A., Yushin B.A., Frolov V.Ya. Development of Plasma Technology for Metal Powders Used in Additive Technologies. – Journal of Physics Conference Series, 1753(1): 012019, DOI:10.1088/1742-6596/1753/1/012019.
20. Kadyrov А.А. Razrabotka plazmennoy tekhnologii dlya polucheniya metallicheskikh poroshkov, ispol'zuemykh v additivnykh tekhnologiyakh: dis. … kand. tekhn. nauk (Development of Plasma Technology for the Production of Metal Powders Used in Additive Technologies: Dis. ... Cand. Sci. (Eng.)). SPb., 2021, 116 p.
21. Trelles J. et al. Arc Plasma Torch Modeling. – Journal of Thermal Spray Technology, 2009, vol. 18(5), pp. 728–752, DOI:10.1007/s11666-009-9342-1.
22. Murphy A.B. A Perspective on Arc Welding Research: The Importance of the Arc, Unresolved Questions and Future Directions. – Plasma Chemistry and Plasma Processing, 2015, vol. 35(3), pp. 471–489, DOI:10.1007/s11090-015-9620-2.
23. Baeva M. et al. Novel Non-Equilibrium Modelling of a DC Electric Arc in Argon. – Journal of Physics D: Applied Physics, 2016, vol. 49(24), DOI:10.1088/0022-3727/49/24/245205.
24. Tanaka Ya., Fujino T., Iwao T. Review of Thermal Plasma Simulation Technique. – IEEJ Transactions on Electrical and Electronic Engineering, 2019, vol. 14(11), pp. 1582–1594, DOI:10.1002/tee.23040.
25. Gonzalez J.J., Freton P., Gleizes A. Comparisons between Two- and Three-Dimensional Models: Gas Injection and Arc Attachment. – Journal of Physics D: Applied Physics, 2002, vol. 35(24), pp. 3181–3191, DOI:10.1088/0022-3727/35/24/306.
26. Colombo V. et al. 3D Static and Time-Dependent Modelling of a DC Transferred Arc Twin Torch System. – Journal of Physics D: Applied Physics, 2011, vol. 44(19), DOI: 10.1088/0022-3727/44/19/194005.
27. Boselli M., Gherardi M., Colombo V. 3D Modelling of the Synthesis of Copper Nanoparticles by Means of a DC Transferred Arc Twin Torch Plasma System. – Journal of Physics D: Applied Physics, 2019, vol. 52(44), DOI:10.1088/1361-6463/ab3607.
28. Tang K.M. et al. Three-Dimensional Modelling of a DC Arc Plasma in a Twin-Torch System. – Journal of Physics D: Applied Physics, 2010, vol. 43(34), DOI:10.1088/0022-3727/43/34/345201.
29. Frolov V.Ya., Ivanov V.N., Ivanov D.V. Elektrichestvo – in Russ. (Electricity), 2018, No. 7, pp. 54–60.
30. Dresvin S.V., Ivanov D.V. Fizika plazmy (Plasma Physics). SPb.: Izd-vo Politekhn. un-ta, 2013, 542 p.
31. Engel'sht V.S. et al. Nizkotemperaturnaya plazma. T. 1. Teoriya stolba elektricheskoy dugi (Low-Temperature Plasma. Vol. 1. Theory of the Electric Arc Column). Novosibirsk: Nauka, 1990, 380 p.
32. Ivanov D.V., Zverev S.G. Vestnik Bashkirskogo universiteta – in Russ. (Bulletin of Bashkir University), 2023, vol. 28, No. 3, pp. 222–229.
---
The work was carried out within the framework of the research topic under the state assignment of the Ministry of Science and Higher Education of the Russian Federation FSEG-2023-0012.
Published
2024-02-01
Section
Article