Studying the Parameters of a Transverse Flux Synchronous Wind Generator for the Arctic Region

  • Viktor N. ANTIPOV
  • Andrey D. GROZOV
  • Anna V. IVANOVA
Keywords: transverse flux, permanent magnets, synchronous generator, topology, Arctic region wind power, performance

Abstract

The design of transverse flux electric machines allows for higher torque densities and is considered promising for an 800 kW, 690 V, 150 rpm synchronous generator designed for the Arctic region wind power applications. A comparative analysis of the machine parameters for two topologies having magnetic flux concentration is performed. Magnetization is provided along the magnet length; the magnet length is equal to the winding width; the stator tooth is located along the rotor radius. In one topology, the arrangement of stators relative to the rotor is two-sided, and in the other, one-sided. Electromagnetic calculations of the generator for both topologies were carried out with a wide variation range of input variables: the air gap size, the stator external diameter, and the permanent magnets length. For both topologies, with a decrease in the diameter and air gap, the consumption of materials decreases, and with a decrease in the magnet length, the masses of magnets and copper decrease, and the mass of steel increases. For the topology with one-sided arrangement of stators, the overall axial size is decreased by almost a half; in addition, a saving of active materials is obtained. In terms of the active materials mass, both topologies are inferior to the generator with a longitudinal flux; in terms of torque density, only the topology with one-sided arrangement of stators outperforms the indicators of the machine with a longitudinal flux (for any calculated length of magnets) by 1.23-1.7 times.

Author Biographies

Viktor N. ANTIPOV

(I.V. Grebenshchikov Institute of Silicate Chemistry of the Russian Academy of Sciences, St. Petersburg, Russia) – Leading Researcher, Dr. Sci. (Eng.).

Andrey D. GROZOV

(I.V. Grebenshchikov Institute of Silicate Chemistry of the Russian Academy of Sciences, St. Petersburg, Russia) – Research Associate.

Anna V. IVANOVA

(I.V. Grebenshchikov Institute of Silicate Chemistry of the Russian Academy of Sciences, St. Petersburg, Russia) – Senior Researcher, Cand. Sci. (Phys.-Math.).

References

1. Сопот В.Н., Кузнецова В.Н., Исаков А.С. Применение возобновляемых и нетрадиционных источников энергии для энергоснабжения удаленных населенных пунктов, расположенных в условиях Севера и Дальнего Востока РФ. – Актуальные проблемы естественных и технических наук, 2021, с. 200–216.
2. ПАО «Передвижная энергетика» [Электрон. ресурс], URL: http://mob-energy.ru (дата обращения 14.02.2024).
3. Бутузов В.А., Безруких П.П., Грибков С.В. Российская ветроэнергетика: научно-конструкторские школы, этапы развития, перспективы. – Сантехника, отопление, кондиционирование, 2021, № 5(233), с. 62–76.
4. РAO ЭС Востока и Komai Haltec Inc. планируют локализовать производство ветроэнергетических установок на Дальнем Востоке [Электрон. ресурс], URL: https://www.ruscable.ru/news/2015/10/06/RAO_ES_Vostoka_i_Komai_Haltec_Inc_planiruut_lokali (дата обращения 14.02.2024).
5. Юсупов K.Н., Беляев K.Л. Ветроэнергетическая установка SWT 3.0-101: безредукторная технология от Siemens. – Турбины и дизели, 2011, т. 4, с. 4–9.
6. Polinder H. et al. Comparison of Direct-Drive and Geared Generator Concepts for Wind Turbines. – IEEE Transactions on Energy Conversion, 2006, vol. 21(3), pp. 725–733, DOI: 10.1109/IEMDC.2005.195776.
7. Siemens SWT-1.3-62 [Электрон. ресурс], URL: https://en.wind-turbine-models.com/turbines1457-siemens-swt-1.3-62 (дата обращения 14.02.2024).
8. Bang D.N. Design of Transverse Flux Permanent Magnet Machines for Large Direct-Drive Wind Turbines. – Ph.D. dis., Electr. Eng. Dept., Delft Univ. Technol. The Netherlands, 2010.
9. WWD-1 1 MW Wind Turbine [Электрон. ресурс], URL: https://en.wind-turbine-models.com/turbines/1544-winwind-wwd-1-d56 (дата обращения 14.02.2024).
10. Renewable Generators Medium Speed Permanent Magnet Generator (MS PMG) [Электрон. ресурс], URL: https://abbengines.nt-rt.ru/images/manuals/gen7.pdf (дата обращения 14.02.2024).
11. Harris M.R., Pajooman G.H., Sharkh S.M.A. Comparison of Alternative Topologies for VRPM (Transverse-Flux) Electrical Machines. – IEE Colloquium on New Topologies for Permanent Magnet Machines, 1997, DOI: 10.1049/ic:19970519.
12. Yu Z., Jianyun C. Power Factor Analysis of Transverse-Flux Permanent Machines. – International Conference on Electrical Machines and Systems, 2005, vol. 1, pp. 450–453, DOI: 10.1109/icems.2005.202567.
13. Rang Y., Gu C., Li H. Analytical Design and Modeling of a Transverse Flux Permanent Magnet Machine. – International Conference on Power System Technology, 2002, vol. 4, pp. 2164–2167, DOI: 10.1109/ICPST.2002.1047165.
14. Пат. RU2797363C1. Электрическая машина с поперечным потоком / В.Н. Антипов, А.Д. Грозов, А.В. Иванова, 2023.
15. Антипов В.Н., Грозов А.Д., Иванова А.В. Синхронная машина с поперечным потоком для децентрализованной ветроэнергетики. – Конференция «Энерго- и ресурсосбережение – XXI век», 2022, с. 54–62.
16. Антипов В.Н., Грозов А.Д., Иванова А.В. Подход к проектированию статорных обмоток мощных ветрогенераторов. – Электричество, 2022, № 4, с. 59–65.
17. Husain T. et al. Design Considerations of a Transverse Flux Machine for Direct-Drive Wind Turbine Applications. – IEEE Transactions on Industry Applications, 2018, vol. 54(4), pp. 3604–3615, DOI: 10.1109/tia.2018.2814979.
18. Pat. US11296585B2. Single Stack Multiphase Transverse Flux Machine / Y. Sozer, T. Husaen, 2022.
19. Заявка на изобретение № 2023122421 от 28.08.2023. Электрическая машина с поперечным потоком / В.Н. Антипов, А.Д. Грозов, А.В. Иванова.
20. Dubois M.R., Polinder H., Ferreira J.A. Comparison of Generator Topologies for Direct-Drive Wind Turbines. – Nordic Countries Power and Industrial Electronics Conference (NORPIE), 2000.
---
Работа выполнена в рамках Госзадания ИХС РАН (регистрационный номер темы 1023032900322-9-1.4.3)
#
1. Sopot V.N., Kuznetsova V.N., Isakov A.S. Aktual'nye problemy estestvennyh i tekhnicheskih nauk – in Russ. (Actual Problems of Natural and Technical Sciences), 2021, pp. 200–216.
2. JSC Mobile Energy [Electron. resource], URL: http://mob-energy.ru (Date of appeal 14.02.2024).
3. Butuzov V.A., Bezrukih P.P., Gribkov S.V. Santekhnika, otoplenie, konditsionirovanie – in Russ. (Plumbing, Heating, Air-Conditioning), 2021, No. 5(233), pp. 62–76.
4. RAO ES [Electron. resource], URL: https://www.ruscable.ru/news/2015/10/06/RAO_ES_Vostoka_i_Komai_Haltec_Inc_planiruut_lokali (Date of appeal 14.02.2024).
5. Yusupov K.N., Belyaev K.L. Turbiny i dizeli – in Russ. (Turbines & Diesels), 2011, т. 4, с. 4–9.
6. Polinder H. et al. Comparison of Direct-Drive and Geared Generator Concepts for Wind Turbines. – IEEE Transactions on Energy Conversion, 2006, vol. 21(3), pp. 725–733, DOI: 10.1109/IEMDC.2005.195776.
7. Siemens SWT-1.3-62 [Electron. resource], URL: https://en.wind-turbine-models.com/turbines1457-siemens-swt-1.3-62 (Date of appeal 14.02.2024).
8. Bang D.N. Design of Transverse Flux Permanent Magnet Machines for Large Direct-Drive Wind Turbines. – Ph.D. dis., Electr. Eng. Dept., Delft Univ. Technol. The Netherlands, 2010.
9. WWD-1 1 MW Wind Turbine [Electron. resource], URL: https://en.wind-turbine-models.com/turbines/1544-winwind-wwd-1-d56 (Date of appeal 14.02.2024).
10. Renewable Generators Medium Speed Permanent Magnet Generator (MS PMG) [Electron. resource], URL: https://abbengines.nt-rt.ru/images/manuals/gen7.pdf (Date of appeal 14.02.2024).
11. Harris M.R., Pajooman G.H., Sharkh S.M.A. Comparison of Alternative Topologies for VRPM (Transverse-Flux) Electrical Machines. – IEE Colloquium on New Topologies for Permanent Magnet Machines, 1997, DOI: 10.1049/ic:19970519.
12. Yu Z., Jianyun C. Power Factor Analysis of Transverse-Flux Permanent Machines. – International Conference on Electrical Machines and Systems, 2005, vol. 1, pp. 450–453, DOI: 10.1109/icems.2005.202567.
13. Rang Y., Gu C., Li H. Analytical Design and Modeling of a Transverse Flux Permanent Magnet Machine. – International Conference on Power System Technology, 2002, vol. 4, pp. 2164–2167, DOI: 10.1109/ICPST.2002.1047165.
14. Pаt. RU2797363C1. Elektricheskaya mashina s poperechnym potokom (Transverse Flux Electrical Machine) / V.N. Antipov, A.D. Grozov, A.V. Ivanova, 2023.
15. Antipov V.N., Grozov A.D., Ivanova A.V. Energo- i resursosberezhenie – XXI vek – in Russ. (Energy and Resource Conservation - XXI century), 2022, pp. 54–62.
16. Antipov V.N., Grozov A.D., Ivanova A.V. Elektrichestvo – in Russ. (Electricity), 2022, No. 4, pp. 59–65.
17. Husain T. et al. Design Considerations of a Transverse Flux Machine for Direct-Drive Wind Turbine Applications. – IEEE Transactions on Industry Applications, 2018, vol. 54(4), pp. 3604–3615, DOI: 10.1109/tia.2018.2814979.
18. Pat. US11296585B2. Single Stack Multiphase Transverse Flux Machine / Y. Sozer, T. Husaen, 2022.
19. Application for an Invention No. 2023122421 от 28.08.2023. Elektricheskaya mashina s poperechnym potokom (Transverse Flux Electrical Machine) / V.N. Antipov, A.D. Grozov, A.V. Ivanova.
20. Dubois M.R., Polinder H., Ferreira J.A. Comparison of Generator Topologies for Direct-Drive Wind Turbines. – Nordic Countries Power and Industrial Electronics Conference (NORPIE), 2000
---
The work was carried out within the framework of the State Assignment of the ISC RAS (topic registration number 1023032900322-9-1.4.3)
Published
2024-02-19
Section
Article