Matters Concerned with Using Cryogenic Cooling of Static Converter Semiconductor Switches

  • Georgy A. DUBENSKIY
  • Kirill A. MODESTOV
  • Yury Ig. KOVAN
  • Konstantin L. KOVALEV
  • Anatoly Ye. LARIONOV
Keywords: static converter devices, electromechanical converters, cryogenic cooling, heat transfer coefficient, converter specific capacity

Abstract

In Russia and abroad, certain scientific and technical progress in the field of development and manufacture of electromechanical converters constructed on the basis of high-temperature superconducting materials has been achieved. The specific capacity of such electrical machines exceeds 10 kW/kg when cooled with liquid nitrogen. The specific capacity of static converting devices operating jointly with electromechanical converters and fitted with forced cooling is as a rule not higher than 1 kW/kg. Therefore, the problem of increasing the specific capacity of both electromechanical and static semiconductor electric power devices of movable facilities, especially when used in the aerospace industry, is very topical. The article considers matters concerned with cooling the semiconductor switches of static converters with liquid nitrogen. More efficient cooling ensured by such arrangement results in that a significantly higher heat transfer coefficient is obtained; as a consequence, it becomes possible to make the heat sinks and, hence, the entire converter with smaller mass and dimensions. Calculations carried out using experimental results have shown that the use of cryogenic cooling makes it possible to increase the relative converter capacity by approximately a factor of 50—100. The converter unit layout problem has been solved: the most promising solution is to place it into the zone cooled with liquid nitrogen.

Author Biographies

Georgy A. DUBENSKIY

DUBENSKIY Georgy A. (Moscow Aviation Institute — MAI, Moscow, Russia) — Associate Professor, Senior Scientist, Cand. Sci. (Eng.)

Kirill A. MODESTOV

MODESTOV Kirill A. (MAI, Moscow, Russia) — Associate Professor, Cand. Sci. (Eng.)

Yury Ig. KOVAN

KOVAN Yury Ig. (MAI, Moscow, Russia) — Associate Professor, Senior Scientist, Cand. Sci. (Eng.)

Konstantin L. KOVALEV

KOVALEV Konstantin L. (MAI, Moscow, Russia) — Professor, Head of the Department, Dr. Sci. (Eng.)

Anatoly Ye. LARIONOV

LARIONOV Anatoly Ye. (MAI, Moscow, Russia) — Associate Professor, Senior Scientist, Cand. Sci. (Eng.)

References

Электрический самолёт: концепция и технологии/Под ред. С.М. Мусина. Уфа: УГАТУ, 2014, 388 с.

Найвельт Г. С., Мазель К. Б., Хусаинов Ч. И. и др. Источ­ники электропитания радиоэлектронной аппаратуры: Справоч­ник/Под ред. Г.С. Найвельта. М.: Радио и связь, 1985, 576 с.

Лёвин А.В., Алексеев И.И., Харитонов С.А., Ковалев Л.К. Электрический самолёт: от идеи до реализации. М.: Машино­строение, 2010, 288 с.

Ward R.R., Dawson W.J., Zhu L., Kirschman R.K., Mueller O., Hennessy M.J., Mueller E., Patterson R.L., Dickman J.E. and Hammoud A. Power diodes for cryogenic operation, in PESC Record - IEEE Annual Power Electronics Specialists Conf., 2003, 1891 p.

Григорьев В.А., Павлов Ю.М., Аметистов Е.В. Кипение криогенных жидкостей. М.: Энергия, 1977, 288 с.

Костюк В.В., Каторгин Б.И., Фирсов В.П., Ковалёв К.Л., Равикович Ю.А., Антюхов И.В., Тимушев С.Ф., Верещагин М.М., Холобцев Д.П., Ермилов Ю.И., Балабошко Н.Г., Гапеев Ю.А., Лесовников А.С., Сычков А.Е., Модестов К.А. Система криообеспечения высокотемпературной сверхпроводимости устройств (СКР 001). — Инженерный журнал: наука и иннова­ции, 2017, вып. 8 [Электрон. ресурс] http://dx.doi.org/10.18698/ 2308-6033-2017-8-1647 (Дата обращения 10.09.2018).

JSC «Infinion Technologies AG» [Офиц. сайт] http://www.irf.com/package/ (Дата обращения 27.10.2018).

Дубенский Г.А., Кован Ю.И. Электроэнергетические пре­образовательные устройства. М.: Изд-во МАИ, 2017, 52 с. Elektrichestvo, 2019, No. 6, pp. 4—12

Чебовский О.Г. и др. Силовые полупроводниковые при­боры: Справочник. М.: Энергоатомиздат, 1985, 400 с.

Modestov K., Kovalev K., Dubensky A., Zhuravlev S. Brushless Nonsteel HTS Generator with Combined Excitation with Trapped Fleld Plates on the Rotor. — IEEE Transactions on Applied Superconductivity, 2018, vol. 28, iss. 4, pp. 1—5. doi:10.1109//tasc.2018.2799327.

Dubensky A.A., Kovalev K.L., Larionov A.E., Modestov K.A., Penkin V.T., Poltavets V.N. An Outlook of the Use of Cryogenic Electric Machines Onboard Aircraft. — IEEE Transactions on Applied Superconductivity, 2016, vol. 26, iss. 3, pp. 1—4. doi:10.1109/tasc.2016.2524656.

Kovalev K.L., Penkin V.T., Larionov A.E., Modestov K.A., Ivanov N.S., Tulinova E.E., Dubensky A.A., Verzhbitsky L.G., Kozub S.S. Brushless Superconducting Synchronous Generator with Claw-Shaped Poles and Permanent Magnets. — IEEE Transactions on Applied Superconductivity, 2016, vol. 26. iss. 3, pp. 1—4. doi:10.1109/tasc.2016.252899.
#
Elektricheskiy samolet: kontseptsiya i tekhnologii (Electric aircraft: concept and technology)/Edit. by S.M. Musin. Ufa, Publ. UGATU, 2014, 388 p.

Nayvelt G.S., Mazel K.B. et al. Istochniki elektropitaniya radioelektronnoy apparatury: Spravochnik (Power supply for radioelectronic equipment: Directory)/Edit. by G.S. Nayvelt. Moscow, Radio i svyaz, 1985, 576 p.

Levin A.V., Alekseyev I.I., Kharitonov S.A., Kovalev L.K. Elektricheskiy samolet: ot ideyi do realizatsii (Electric aircraft: from idea to implementation). Moscow, Mashinostroeniye, 2010, 288 p.

Ward R.R., Dawson W.J., Zhu L., Kirschman R.K., Mueller O., Hennessy M.J., Mueller E., Patterson R.L., Dickman J.E., Hammoud A. Power diodes for cryogenic operation, in PESC Record. — IEEE Annual Power Electronics Specialists Conf., 2003, 1891 pp.

Grigor'yev V.A., Pavlov Yu.M., Ametistov Ye.V. Kipeniye kriogennykh zhidkostey (The boiling of cryogenic liquids). Moscow, Energiya, 1977, 288 p.

Kostyuk V.V., Katorgin B.I., Firsov V.P., Kovalev K.L., Ravikovich Yu.A., Antyukhov I.V., Timushev S.F., Vereshchagin M.M., Kholobtsev D.P., Ermilov Yu.I., Balaboshko N.G., Gapeyev Yu.A., Lesovnikov A.S., Sychkov A.Ye., Modestov K.A. Sistema krioobespecheniya vysokotemperaturnoy sverkhprovodimosti ustroistv (Cryogenic supply system for high-temperature superconductivity devices (SCR 001)). Ingineering Journal: Scientist and Innovation, 2017, iss. 8 [Electron. resurs] http://dx.doi.org/10.18698/ 2308-6033-2017-8-1647 (Data obrasheniya 10.09.2018).

JSC «Infinion Technologies AG» [Ofits. Sayt] http://www.irf.com/package/(Data obrashcheniya 27.10.2018].

Dubenskiy G.A., Kovan Yu.I. Elektroenergeticheskiye preobrazovatelnye ustroystva (Electric power converters). Moscow, Publ. MAI, 2017, 52 p.

Chebovskiy O.G. et. al. Silovye poluprovodnikovye pribory: Spravochnik (Power semiconductor devices. Directory). Moscow, Energoatomizdat, 1985, 400 p.

Modestov K., Kovalev K., Dubensky A., Zhuravlev S. Brushless Nonsteel HTS Generator with Combined Excitation with Trapped Fleld Plates on the Rotor. — IEEE Transactions on Applied Superconductivity, 2018, vol. 28, iss. 4, pp. 1—5. doi:10.1109//tasc.2018.2799327.

Dubensky A.A., Kovalev K.L., Larionov A.E., Modestov K.A., Penkin V.T., Poltavets V.N. An Outlook of the Use of Cryogenic Electric Machines Onboard Aircraft. — IEEE Transactions on Applied Superconductivity, 2016, vol. 26, iss.3, pp. 1—4. doi:10.1109/tasc.2016.2524656.

Kovalev K.L., Penkin V.T., Larionov A.E., Modestov K.A., Ivanov N.S., Tulinova E.E., Dubensky A.A., Verzhbitsky L.G., Kozub S.S. Brushless Superconducting Synchronous Generator with Claw-Shaped Poles and Permanent Magnets. — IEEE Transactions on Applied Superconductivity, 2016, vol. 26. iss. 3, pp. 1—4. doi:10.1109/tasc.2016.252899.
Published
2019-06-19
Section
Article