Modeling the Technologies for Melting and Casting Light Alloys in an Electromagnetic Field
Abstract
Scientific principles of the development of technologies for melting and casting aluminum and titanium-based alloys in an alternating electromagnetic field are considered. In the 21st century, innovative technologies for melting and casting light alloys in an alternating electromagnetic field can hardly be developed and implemented unless being supported with digital technologies, and methodology of digital twins and numerical models combining closely interconnected electromagnetic, thermodynamic, hydrodynamic and mechanical processes. A unique technology for continuously casting small-diameter round ingots into an electromagnetic crystallizer with the crystallizing metal surface directly cooled with water has been developed. By applying the newly developed technology it becomes possible to simultaneously achieve a number of unique effects that alter significantly the quality and properties of the resulting billets (reduction in the amount of undesirable impurities and inclusions in the metal structure, uniform distribution of phases and grains in the metal ingot structure, and uniform distribution of chemical elements and compounds in the metal matrix). The occurrence of a titanium alloy liquid phase inside the cylinder was predicted using a numerical model and confirmed by experimental studies. Owing to a unique combination of the titanium thermophysical properties with the action of an alternating electromagnetic field in an inductor, up to 90% of the total mass of a titanium cylindrical billet can be obtained in the liquid phase. Magnetohydrodynamic effects that come into picture after the start of melting play a special role in achieving this result.
References
2. Гецелев 3.Н. и др. Непрерывное литье в электромагнитный кристаллизатор. М.: Металлургия, 1983, 152 с.
3. Pervukhin M.V. et al. Mathematic Simulation of Electromagnetic and Thermal Hydrodynamic Processes in the “Inductor-Ingot” System of an Electromagnetic Mould. – Magnetohydrodynamics, 2011, 47(1), pp. 79–88.
4. Андреев А.Л. и др. Плавка и литье титановых сплавов. М.: Металлургия, 1978, 383 с.
5. Muehlbauer A. History of Induction Heating and Melting. Essen: Vulkan-Verlag, 2008, 202 p.
6. Тир Л.Л., Губченко А.П. Индукционные плавильные печи для процессов повышенной точности и чистоты. М.: Энергоатомиздат, 1988, 120 с,
7. Spitans S. et al. New Technology for Large Scale Electromagnetic Levitation Melting of Metals. – Magnetohydrodynamics, 2015, 51(1), pp. 121–132, DOI:10.22364/mhd.51.1.12.
8. Bojarevics V., Roy A., Pericleous K.A. Magnetic Levitation of large liquid Volume. – Magnetohydrodynamics, 2010, 46(4), pp. 339–352, DOI:10.22364/mhd.46.4.3.
9. Vencels J. et al. EOF Library: Open-Source Elmer and Open FOAM Coupler for Simulation of MHD with Free Surface. – XVIII International UIE – Congress Electrotechnologies for Material Processing, 2017.
10. Винтер Э.Р., Первухин М.В. Исследование процесса магнитогидродинамической сепарации расплава алюминия в каналах индукционного устройства канального типа. – Вопросы электротехнологии, 2023, № 3, с. 5–14.
11. Scepanskis M. et al. Solid Inclusions in an Electromagnetically Induced Recirculated Turbulent Flow: Simulation and Experiment. – International Journal of Multiphase Flow, 2014, vol. 64, pp. 19–27, DOI:10.1016/j.ijmultiphaseflow.2014.04.004.
12. Гершуни Г.З., Жуховицкий Е.М. Устойчивость конвективных течений. М.: Наука, 1989, 320 с.
13. Menter F.R., Kuntz M., Langtry R. Ten Years of Experience with the SST Turbulence Model. – Turbulence, Heat and Mass Transfer, 2003, No. 4, pp. 625–632.
14. Hirt C.W., Nichols B.D. Volume of Fluid (VOF). Method for the Dynamics of Free Boundaries. – Journal of Computational Physics, 1981, No. 39, pp. 201–226, DOI:10.1016/0021-9991(81)90145-5.
15. Минаков А.А. Численное моделирование течений вязкой несжимаемой жидкости с подвижными границами: дис. ... канд. техн. наук. Красноярск, 2008, 174 с.
16. Voller V.R., Brent A.D., Prakash C. The Modeling of Heat, Mass and Solute Transport in Solidification Systems. – International Journal of Heat and Mass Transfer, 1989, 32(9), pp. 1719–1731, DOI:10.1016/0017-9310(89)90054-9.
17. Khatsayuk M.Yu. et al. Numerical Simulation of Process of Electromagnetic Casting and Technology Features. – Metallurgical and Materials. Transaction B, 2023, 54(10), DOI:10.1007/s11663-023-02791-8.
18. Хацаюк M.Ю. и др. Многодисциплинарный численный анализ процесса литья алюминиевых слитков в электромагнитное поле. – Металлург, 2023, № 3, с. 84–95.
19. Масликов П.А. Исследование условий получения жидкой фазы титановых сплавов внутри цилиндрических тел при индукционном нагреве: автореф. дис. ... канд. техн. наук. СПб, 2014, 19 с.
20. Демидович В.Б. Бестигельная плавка титана в переменном электромагнитном поле. – Электричество, 2023, № 10, с. 57–63.
21. Демидович В.Б. и др. Численное моделирование бестигельного плавления титанового сплава в переменном электромагнитном поле. – Известия РАН. Энергетика, 2015, № 6, с. 52–62.
---
Часть представленных исследований выполнена за счет гранта Российского научного фонда (проект № 22-19-00128 «Эволюция структуры высокопрочных алюминиевых сплавов системы Al-Zn-Mg (Ni, Fe, Ca), получаемых с использованием технологии электромагнитного литья», https://rscf.ru/project/22-19-00128/)
#
1. Getselev Z.N. Magnitnaya gidrodinamika – in Russ. (Magnetic Hydrodynamics), 1972, No. 4, pp. 152–154.
2. Getselev Z.N. et al. Nepreryvnoe lit'e v elektromagnitnyy kristallizator (Continuous Casting in an Electromagnetic Mold). M.: Metallurgiya, 1983, 152 p.
3. Pervukhin M.V. et al. Mathematic Simulation of Electromagnetic and Thermal Hydrodynamic Processes in the “Inductor-Ingot” System of an Electromagnetic Mould. – Magnetohydrodynamics, 2011, 47(1), pp. 79–88.
4. Andreev A.L. et al. Plavka i lit'e titanovyh splavov (Melting and Casting of Titanium Alloys). M.: Metallurgiya, 1978, 383 p.
5. Muehlbauer A. History of Induction Heating and Melting. Essen: Vulkan-Verlag, 2008, 202 p.
6. Tir L.L., Gubchenko A.P. Induktsionnye plavil'nye pechi dlya protsessov povyshennoy tochnosti i chistoty (Induction Melting Furnaces for Processes of Increased Accuracy and Purity). M.: Energoatomizdat, 1988, 120 p,
7. Spitans S. et al. New Technology for Large Scale Electromagnetic Levitation Melting of Metals. – Magnetohydrodynamics, 2015, 51(1), pp. 121–132, DOI:10.22364/mhd.51.1.12.
8. Bojarevics V., Roy A., Pericleous K.A. Magnetic Levitation of large liquid Volume. – Magnetohydrodynamics, 2010, 46(4), pp. 339–352, DOI:10.22364/mhd.46.4.3.
9. Vencels J. et al. EOF Library: Open-Source Elmer and Open FOAM Coupler for Simulation of MHD with Free Surface. – XVIII International UIE – Congress Electrotechnologies for Material Processing, 2017.
10. Vinter E.R., Pervuhin M.V. Voprosy elektrotekhnologii – in Russ. (Issues of Electrotechnology), 2023, No. 3, pp. 5–14.
11. Scepanskis M. et al. Solid Inclusions in an Electromagnetically Induced Recirculated Turbulent Flow: Simulation and Experiment. – International Journal of Multiphase Flow, 2014, vol. 64, pp. 19–27, DOI:10.1016/j.ijmultiphaseflow.2014.04.004.
12. Gershuni G.Z., Zhuhovitskiy E.M. Ustoychivost' konvektivnyh techeniy (Stability of Convective Currents). M.: Nauka, 1989, 320 p.
13. Menter F.R., Kuntz M., Langtry R. Ten Years of Experience with the SST Turbulence Model. – Turbulence, Heat and Mass Transfer, 2003, No. 4, pp. 625–632.
14. Hirt C.W., Nichols B.D. Volume of Fluid (VOF). Method for the Dynamics of Free Boundaries. – Journal of Computational Physics, 1981, No. 39, pp. 201–226, DOI:10.1016/0021-9991(81)90145-5.
15. Minakov А.А. Chislennoe modelirovanie techeniy vyazkoy neszhimaemoy zhidkosti s podvizhnymi granitsami: dis. ... kand. tekhn. nauk (Numerical Modeling of Flows of a Viscous Incompressible Fluid with Movable Boundaries: Dis. … Cand. Sci. (Eng.)). Krasnoyarsk, 2008, 174 p.
16. Voller V.R., Brent A.D., Prakash C. The Modeling of Heat, Mass and Solute Transport in Solidification Systems. – International Journal of Heat and Mass Transfer, 1989, 32(9), pp. 1719–1731, DOI:10.1016/0017-9310(89)90054-9.
17. Khatsayuk M.Yu. et al. Numerical Simulation of Process of Electromagnetic Casting and Technology Features. – Metallurgical and Materials. Transaction B, 2023, 54(10), DOI:10.1007/s11663-023-02791-8.
18. Khatsayuk M.Yu. et al. Metallurg – in Russ. (Metallurgist), 2023, No. 3, pp. 84–95.
19. Maslikov P.А. Issledovanie usloviy polucheniya zhidkoy fazy titanovyh splavov vnutri tsilindricheskih tel pri in-duktsionnom nagreve: avtoref. dis. ... kand. tekhn. nauk (Investigation of the Conditions for Obtaining the Liquid Phase of Titanium Alloys Inside Cylindrical Bodies under Induction Heating: Abstract of the Dis. … Cand. Sci. (Eng.)). SPb., 2014, 19 p.
20. Demidovich V.B. Elektrichestvo – in Russ. (Electricity), 2023, No. 10, pp. 57–63.
21. Demidovich V.B. et al. Izvestiya RAN. Energetika – in Russ. (News of the Russian Academy of Sciences. Power Engineering), 2015, No. 6, pp. 52–62
---
Part of the presented research was financially supported by a grant from the Russian Science Foundation (project No. 22-19-00128 "Evolution of the structure of high-strength aluminum alloys of the Al-Zn-Mg (Ni, Fe, Ca) system obtained using electromagnetic casting technology", https://rscf.ru/project/22-19-00128 /)