Development of a Virtual Test Bench for Studying Fuses
Abstract
Modern concepts of designing electrical products are based on the development of computer models, which in fact represent mathematical models of multiphysical processes implemented in a computer environment. The development of correct computer models for the processes occurring in fuses makes it possible to reduce the amount of necessary field tests and decrease the time taken to develop new designs for the required characteristics. The article addresses the development of mathematical and computer models with a high level of adequacy, as well as a virtual test bench for digital (virtual) tests of high-speed rotary fuses. A mathematical model describing the gas-dynamic, thermal and electrical processes in a fuse has been developed on the basis of fundamental physical laws. The mathematical model equations were laid at the heart of a newly developed 3D non-stationary computer model of the fuse. The computer models of the fuse and the experimental setup were combined into a united computer model. A virtual test bench has been developed based on the united computer model, and fuse digital tests have been carried out. The numerical study results have been validated against the data of field fuse tests.
References
2. Бутырин П.А., Дубицкий С.Д., Коровкин Н.В. Численное моделирование электромагнитных полей: мультифизические задачи, инструментарий и обучение. – Электричество, 2019, № 6, с. 51–58.
3. Макриденко Л.А. и др. Защита от коротких замыканий высокоскоростных синхронных генераторов, возбуждаемых от постоянных магнитов. – Электричество, 2019, № 4, с. 39–43.
4. Шульга Р.Н., Иванов В.П. Новые защитно-коммутационные аппараты переменного и постоянного тока. – Электричество, 2019, № 3, с. 24–30.
5. Beshentsev N.А. et al. Определение параметров ударного трансформатора для испытаний на стойкость к токам короткого замыкания. – Электричество, 2023, № 8, с. 23–29.
6. Tsukamoto K. et al. Effects of the Bulk Density of Arc‐Extinguishing Sand on Fuse Arc Extinction Characteristics. – IEEJ Transactions on Electrical and Electronic Engineering, 2023, 18(3), pp. 386–393, DOI: 10.1002/tee.23734.
7. Fukai Y. et al. Measurement of Arc Temperature, Electron Density and Electrical Conductivity in Fuse. – 11th International Conference on Electric Fuses and their Applications, 2019.
8. Xiao Y.Y. et al. Experimental Analysis on Initial Arc Column Voltage Gradient in Fuse Filled with Silica Sand. – Advanced Materials Research, 2013, (605-607), pp. 1902–1907, DOI: 10.4028/www.scientific.net/AMR.605-607.1902.
9. Saqib M.A. et al. Electron Temperature and Arc Diameter in a Sand-Filled HBC Fuse. – IEEE Transactions on Plasma Science, 2011, 39(7), pp. 1619–1630, DOI: 10.1109/TPS.2011.2145002.
10. Karagiannopoulos C. G. Experimental Investigation of Arc in Fuse Elements during the Interruption Process. – Gaseous Dielectrics X. Boston, MA: Springer US, 2004, pp. 235–240, DOI: 10.1007/978-1-4419-8979-6_33.
11. Hausmann M., Grass N. The Influence of Current Frequencies up to 1.000 Hz on Power Dissipation and Time-Current Characteristics of NH gG Fuse-Links. – 9th International Conference on Electrical Fuses and Their Applications, 2011, 12(14.09).
12. Bussiere W. Influence of Sand Granulometry on Electrical Characteristics, Temperature and Electron Density During High-Voltage Fuse Arc Extinction. – Journal of Physics D: Applied Physics, 2001, 34(6), pp. 925–935, DOI:10.1088/0022-3727/34/6/314.
13. Murashov I., Frolov V., Kvashnin A. Numerical Simulation of Heat Transfer Processes of the Circuit Breaker Contact System. – IOP Conference Series: Materials Science and Engineering, 2019, 643(1), DOI: 10.1088/1757-899X/643/1/012116.
14. Hoffmann G., Kaltenborn U. Thermal Modeling of High Voltage H.R.C Fuses and Simulation of Tripping Characteristic. – Proceedings of the International Conference on Electrical Fuses and Their Applications, 2003, pp. 174–180.
15. Vilums R., Buikis A. Conservative Averaging and Finite Difference Methods for Transient Heat Conduction in 3D Fuse. – WSEAS Transactions on Heat and Mass Transfer, 2008, 3(1), pp. 111–124.
16. Vilums R. et al. Cylindrical Model of Transient Heat Conduction in Automotive Fuse Using Conservative Averaging Method. – WSEAS International Conference. Proceedings. Mathematics and Computers in Science and Engineering, WSEAS, 2008, 13, pp. 355–360.
17. Agarwal M.S., Stokes A.D., Kovitya P. Pre-Arcing Behaviour of Open Fuse Wire. – Journal of Physics D: Applied Physics, 1987, 20(10), pp. 1237–1242.
18. Giurgiu V. et al. Analysis of Thermal Phenomena in High-Voltage Fuse-Links Based on Thermovision Equipment. – Proceedings of the 3rd international conference on European computing conference, 2009, pp. 165–168.
19. Torres E. et al. New FEM Model for Thermal Analysis of Medium Voltage Fuses. – 19th International Conference on Electricity Distribution, 2007, 0576.
20. Farahani H.F., Asadi M., Kazemi A. Analysis of Thermal Behavior of Power System Fuse Using Finite Element Method. – IEEE 4th International Power Engineering and Optimization Conference, 2010, pp. 189–195, DOI: 10.1109/PEOCO.2010.5559169.
21. Pleşca A.T. Thermal Analysis of the Fuse with Unequal Fuse Links Using Finite Element Method. – International Journal of Electrical and Computer Engineering, 2012, 6(12). pp. 1447–1455.
22. Dhadyalla G. et al. Simulation Methodologies to Support Novel Fuse Design for Energy Storage Systems Using COMSOL. – IET Hybrid and Electric Vehicles Conference, 2013, DOI: 10.1049/cp.2013.1888.
23. Sun Y., Dietsch T. Steady-State Thermal Analysis of Electric Fuse using Finite Element Method. – 2022 IEEE 67th Holm Conference on Electrical Contacts, 2022, DOI: 10.1109/HLM54538.2022.9969810.
24. Rochette D. et al. Modelling of the Pre-Arcing Period in HBC Fuses Including Solid-Liquid-Vapour Phase Changes of the Fuse Element. – IEEE 8th International Conference on Electric Fuses and their Applications, 2007, pp. 87–93, DOI: 10.1109/ICEFA.2007.4419972.
25. Memiaghe S., Bussiere W., Rochette D. Numerical Method for Pre-Arcing Times: Application in HBC Fuses with Heavy Fault-Currents. – IEEE 8th International Conference on Electric Fuses and Their Applications, 2007, pp. 127–132, DOI: 10.1109/ICEFA.2007.4419977.
---
Результаты получены с использованием вычислительных ресурсов суперкомпьютерного центра Санкт-Петербургского политехнического университета Петра Великого.
Работа выполнена по инициативе и при поддержке, а также финансировании за счёт собственных средств АО «КЭАЗ».
Авторский коллектив СПбПУ выражает благодарность АО «КЭАЗ» за формулирование задачи, предоставление результатов натурных испытаний и содействие при разработке ВИС, без которого выполнение данного исследования не представляется возможным
#
1. Bussiere W. Electric Fuses Operation, A Review: 1. Pre-Arcing Period. – IOP Conference Series: Materials Science and Engineering, 2012, 29(1), DOI: 10.1088/1757-899X/29/1/012001.
2. Butyrin P.A., Dubitskiy S.D., Korovkin N.V. Elektrichestvo – in Russ. (Electricity), 2019, No. 6, pp. 51–58.
3. Makridenko L.А. et al. Elektrichestvo – in Russ. (Electricity), 2019, No. 4, pp. 39–43.
4. Shul'ga R.N., Ivanov V.P. Elektrichestvo – in Russ. (Electricity), 2019, No. 3, pp. 24–30.
5. Бешенцев Н.А. и др. Elektrichestvo – in Russ. (Electricity), 2023, No. 8, pp. 23–29.
6. Tsukamoto K. et al. Effects of the Bulk Density of Arc‐Extinguishing Sand on Fuse Arc Extinction Characteristics. – IEEJ Transactions on Electrical and Electronic Engineering, 2023, 18(3), pp. 386–393, DOI: 10.1002/tee.23734.
7. Fukai Y. et al. Measurement of Arc Temperature, Electron Density and Electrical Conductivity in Fuse. – 11th International Conference on Electric Fuses and their Applications, 2019.
8. Xiao Y.Y. et al. Experimental Analysis on Initial Arc Column Voltage Gradient in Fuse Filled with Silica Sand. – Advanced Materials Research, 2013, (605-607), pp. 1902–1907, DOI: 10.4028/www.scien-tific.net/AMR.605-607.1902.
9. Saqib M.A. et al. Electron Temperature and Arc Diameter in a Sand-Filled HBC Fuse. – IEEE Transactions on Plasma Science, 2011, 39(7), pp. 1619–1630, DOI: 10.1109/TPS.2011.2145002.
10. Karagiannopoulos C.G. Experimental Investigation of Arc in Fuse Elements during the Interruption Process. – Gaseous Dielectrics X. Boston, MA: Springer US, 2004, pp. 235–240, DOI: 10.1007/978-1-4419-8979-6_33.
11. Hausmann M., Grass N. The Influence of Current Frequencies up to 1.000 Hz on Power Dissipation and Time-Current Characteristics of NH gG Fuse-Links. – 9th International Conference on Electrical Fuses and Their Applications, 2011, 12(14.09).
12. Bussiere W. Influence of Sand Granulometry on Electrical Characteristics, Temperature and Electron Density During High-Voltage Fuse Arc Extinction. – Journal of Physics D: Applied Physics, 2001, 34(6), pp. 925–935, DOI:10.1088/0022-3727/34/6/314.
13. Murashov I., Frolov V., Kvashnin A. Numerical Simulation of Heat Transfer Processes of the Circuit Breaker Contact System. – IOP Conference Series: Materials Science and Engineering, 2019, 643(1), DOI: 10.1088/1757-899X/643/1/012116.
14. Hoffmann G., Kaltenborn U. Thermal Modeling of High Voltage H.R.C Fuses and Simulation of Tripping Characteristic. – Proceedings of the International Conference on Electrical Fuses and Their Applications, 2003, pp. 174–180.
15. Vilums R., Buikis A. Conservative Averaging and Finite Difference Methods for Transient Heat Conduction in 3D Fuse. – WSEAS Transactions on Heat and Mass Transfer, 2008, 3(1), pp. 111–124.
16. Vilums R. et al. Cylindrical Model of Transient Heat Conduction in Automotive Fuse Using Conservative Averaging Method. – WSEAS International Conference. Proceedings. Mathematics and Computers in Science and Engineering, WSEAS, 2008, 13, pp. 355–360.
17. Agarwal M.S., Stokes A.D., Kovitya P. Pre-Arcing Behaviour of Open Fuse Wire. – Journal of Physics D: Applied Physics, 1987, 20(10), pp. 1237–1242.
18. Giurgiu V. et al. Analysis of Thermal Phenomena in High-Voltage Fuse-Links Based on Thermovision Equipment. – Proceedings of the 3rd international conference on European computing conference, 2009, pp. 165–168.
19. Torres E. et al. New FEM Model for Thermal Analysis of Medium Voltage Fuses. – 19th International Conference on Electricity Distribution, 2007, 0576.
20. Farahani H.F., Asadi M., Kazemi A. Analysis of Thermal Behavior of Power System Fuse Using Finite Element Method. – IEEE 4th International Power Engineering and Optimization Conference, 2010, pp. 189–195, DOI: 10.1109/PEOCO.2010.5559169.
21. Pleşca A.T. Thermal Analysis of the Fuse with Unequal Fuse Links Using Finite Element Method. – International Journal of Electrical and Computer Engineering, 2012, 6(12). pp. 1447–1455.
22. Dhadyalla G. et al. Simulation Methodologies to Support Novel Fuse Design for Energy Storage Systems Using COMSOL. – IET Hybrid and Electric Vehicles Conference, 2013, DOI: 10.1049/cp.2013.1888.
23. Sun Y., Dietsch T. Steady-State Thermal Analysis of Electric Fuse using Finite Element Method. – 2022 IEEE 67th Holm Conference on Electrical Contacts, 2022, DOI: 10.1109/HLM54538.2022.9969810.
24. Rochette D. et al. Modelling of the Pre-Arcing Period in HBC Fuses Including Solid-Liquid-Vapour Phase Changes of the Fuse Element. – IEEE 8th International Conference on Electric Fuses and their Applications, 2007, pp. 87–93, DOI: 10.1109/ICEFA.2007.4419972.
25. Memiaghe S., Bussiere W., Rochette D. Numerical Method for Pre-Arcing Times: Application in HBC Fuses with Heavy Fault-Currents. – IEEE 8th International Conference on Electric Fuses and Their Applications, 2007, pp. 127–132, DOI: 10.1109/ICEFA.2007.4419977
---
The results were obtained using the computing facilities of the supercomputer center of Peter the Great St. Petersburg Polytechnic University.
The work was carried out on the initiative and with the support, as well as financing from the own funds of JSC KEAZ.
The SPbPU team of authors expresses gratitude to JSC KEAZ for formulating the problem, providing the results of field tests and assistance in the development of virtual test bench, without which this study could not be carried out