A Nonlocal Model of Droplet Flow Electrification under the Effect of Outer Space Factors

  • Andrey A. SAFRONOV
  • Anatoliy A. KOROTEEV
  • Aleksey L. GRIGOR'EV
  • Nikolay I. FILATOV
Keywords: liquid droplet radiator, outer space factors, plasma, electrification

Abstract

Construction of powerful power installations for space applications inevitably entails the need to solve the problem of removing low-grade heat from the spacecraft. The drawback of panel radiator refrigerators, which are conventionally used for this purpose, is a rapid growth of their surface area and mass with increasing the power level; in addition, they become more vulnerable to micrometeorites. The problem can be solved by using a liquid droplet radiator, in which a heated flow of droplets serves as a radiating surface. Coolant droplets are produced by a droplet generator, cooled due to radiation as they freely propagate in space, and a droplet catcher collects the cooled down flow. Under the influence of outer space factors, the flow of droplets is electrified, as a result of which their motion trajectories are curved. The droplet sheet electrification regularities are considered. A nonlocal electrification model has been developed, which takes into account the effect of charge utilization when collecting a droplet flow. The influence of the droplet flow geometry on the droplet electrification and expansion under the effect of electrostatic forces is studied. The influence of synergetic effects relating to the interaction of droplet flow with outer space factors is substantiated.

Author Biographies

Andrey A. SAFRONOV

SAFRONOV Andrey A. (JSC State Research Center "Keldysh Center", Moscow, Russia) – Senior Researcher, Cand. Sci. (Phys.-Math.).

Anatoliy A. KOROTEEV

(JSC State Research Center "Keldysh Center", Moscow, Russia) – Chief Scientific Officer, Dr. Sci. (Eng.), Academician of the RAS.

Aleksey L. GRIGOR'EV

(JSC State Research Center "Keldysh Center", Moscow, Russia) – Head of the Sector, Cand. Sci. (Eng.).

Nikolay I. FILATOV

(JSC State Research Center "Keldysh Center", Moscow, Russia) – Head of the Dept.

References

1. Бондарева Н.В. и др. Бескаркасные системы отвода низкопотенциального тепла в космосе: успехи отработок и нерешённые задачи. – Известия РАН. Энергетика, 2015, № 4, с. 130–142.
2. Сафронов А.А. и др. Изгиб вязкой струи, истекающей из капиллярного отверстия. – Инженерно-физический журнал, 2022, т. 95, № 1, с. 72–79.
3. Lei Z. et al. Three-Dimensional Numerical Analysis and Experimental Confirmation for Investigating the Ground-Based Lateral Droplet Ejection Toward Microgravity Simulation. – Physics of Fluids, 2022, 103317-3.
4. Guildenbecher D.R. et al. Evaporation and Propagation of Liquid Drop Streams at Vacuum Pressures: Experiments and Modeling. – Physical Review E, 2021, 103(4-1), DOI:10.1103/PhysRevE.103.043105.
5. Коротеев А.А., Нагель Ю.А., Сафронов А.А. Решение краевой задачи для уравнения Пуассона для движущейся заряженной капельной пелены в форме прямоугольного параллелепипеда. – Электричество, 2014, № 7, с. 11–16.
6. Joslyn T.B., Ketsdever A.D. Droplet Charging Effects in the Space Environment. – 27th International Symposium on Rarefied Gas Dynamics, 2011, 1333, pp. 1079–1084, DOI:10.1063/1.3562788.
7. Joslyn T.B., Ketsdever A.D. Constant Momentum Exchange between Microspacecraft Using Liquid Droplet Thrusters. – 46th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, 2010, DOI:10.2514/6.2010-6966.
8. Новиков Л.С. и др. Электризация капельных струй в космической плазме. – Концентрированные потоки энергии в космической технике электронике, экологии и медицине, 2011 [Электрон. ресурс], URL: nuclphys.sinp.msu.ru/school/s11/11_32.pdf (дата обращения 07.02.2024).
9. Orme M., Muntz E.P. Applications to Space Operations of Free-Flying, Controlled Streams of Liquids. – Journal of Spacecraft and Rockets, 1986, 23(4), pp. 411–419, DOI: 10.2514/3.25822.
10. Muntz E.P., Orme M. Characteristics, Control, and Uses of Liquid Streams in Space. – 23rd Aerospace Sciences Meeting, 1985, DOI: 10.2514/6.1985-305.
11. Акишин А., Новиков Л. Электризация космических аппаратов. М.: Знание, 1985, 64 с.
12. Горохов М.В. и др. Исследование зарядки металлических микрочастиц в потоке электронов. – Письма в журнал технической физики, 2016, т. 42, вып. 6, с. 55–61.
13. Панасюк М., Новиков Л. Модель космоса. Т. 2. Воздействие космической среды на материалы и оборудование космических аппаратов. М.: КДУ, 2007, 1145 с.
14. Новиков Л.С. Взаимодействие космических аппаратов с окружающей плазмой. М.: Университетская книга, 2006, 120 с.
15. Надирадзе А.Б. и др. Формирование собственной внешней ионосферы космических аппаратов и эффекты ее воздействия. –Труды МАИ, 2011, вып. 43.
16. Вопросы теории плазмы. Вып. 1 / под ред. М.А. Леонтовича. M.: Госатомиздат, 1963, 290 с.
17. Коротеев А.А., Сафронов А.А., Филатов Н.И. Влияние структуры капельной пелены на мощность бескаркасных космических излучателей и эффективность энергетических установок. – Теплофизика высоких температур, 2016, т. 54, № 5, с. 817–820.
18. Нусинов М.Д. Влияние космического вакуума на материалы и устройства научной аппаратуры. М.: Машиностроение, 1987, 48 с.
19. Блашенков Н.М, Лаврентьев Г.Я. Исследование неравновесной поверхностной ионизации методом полевой поверхностно-ионизационной масс-спектрометрии. – Успехи физических наук, 2007, т. 177, № 1, с. 59–85.
20. Данилкин В.А. Собственная внешняя атмосфера космических аппаратов и ее влияние на параметры радиосигналов бортовых радиотехнических систем. – Теплофизика и аэромеханика, 2008, т. 5, № 1, с. 75–78.
21. Meyer-Vernet N. Flip-Flop of Electric Potential of Dust Grains in Space. – Astronomy and Astrophysics, 1981, 105, pp. 98–106.
#
1. Bondareva N.V. et al. Izvestiya RAN. Energetika – in Russ. (News of the Russian Academy of Sciences. Energy Industry), 2015, No. 4, pp. 130–142.
2. Safronov А.А. et al. Inzhenerno-fizicheskiy zhurnal – in Russ. (Engineering and Physics Journal), 2022, vol. 95, No. 1, pp. 72–79.
3. Lei Z. et al. Three-Dimensional Numerical Analysis and Experimental Confirmation for Investigating the Ground-Based Lateral Droplet Ejection Toward Microgravity Simulation. – Physics of Fluids, 2022, 103317-3.
4. Guildenbecher D.R. et al. Evaporation and Propagation of Liquid Drop Streams at Vacuum Pressures: Experiments and Modeling. – Physical Review E, 2021, 103(4-1), DOI:10.1103/PhysRevE.103.043105.
5. Koroteev A.A., Nagel' Yu.A., Safronov А.А. Elektrichestvo – in Russ. (Electricity), 2014, No. 7, pp. 11–16.
6. Joslyn T.B., Ketsdever A.D. Droplet Charging Effects in the Space Environment. – 27th International Symposium on Rarefied Gas Dynamics, 2011, 1333, pp. 1079–1084, DOI:10.1063/1.3562788.
7. Joslyn T.B., Ketsdever A.D. Constant Momentum Exchange between Microspacecraft Using Liquid Droplet Thrusters. – 46th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, 2010, DOI:10.2514/6.2010-6966.
8. Novikov L.S. et al. Elektrizatsiya kapel'nyh struy v kosmicheskoy plazme (Electrification of Droplet Jets in Space Plasma) [Electron. resource], URL: nuclphys.sinp.msu.ru/school/s11/11_32.pdf (Date of appeal 07.02.2024).
9. Orme M., Muntz E.P. Applications to Space Operations of Free-Flying, Controlled Streams of Liquids. – Journal of Spacecraft and Rockets, 1986, 23(4), pp. 411–419, DOI: 10.2514/3.25822.
10. Muntz E.P., Orme M. Characteristics, Control, and Uses of Liquid Streams in Space. – 23rd Aerospace Sciences Meeting, 1985, DOI: 10.2514/6.1985-305.
11. Akishin A., Novikov L. Elektrizatsiya kosmicheskih apparatov (Electrization of Spacecraft). М.: Znanie, 1985, 64 p.
12. Gorohov M.V. et al. Pis'ma v zhurnal tekhnicheskoy fiziki – in Russ. (Letters to the Journal of Technical Physics), 2016, vol. 42, iss. 6, pp. 55–61.
13. Panasyuk M., Novikov L. Model' kosmosa. T. 2. Vozdeystvie kosmicheskoy sredy na materialy i oborudovanie kosmicheskih apparatov (Model of space. Vol. 2. Impact of the Space Environment on Materials and Equipment of Spacecraft). М.: KDU, 2007, 1145 p.
14. Novikov L.S. Vzaimodeystvie kosmicheskih apparatov s okru-zhayushchey plazmoy (Interaction of Spacecraft with Surrounding Plasma). M.: Universitetskaya kniga, 2006, 120 p.
15. Nadiradze A.B. et al. Trudy MAI – in Russ. (The Works of MAI), 2011, iss. 43.
16. Voprosy teorii plazmy (Questions of Plasma Theory). Iss. 1 / By Ed. М.А. Leontovich. M.: Gosatomizdat, 1963, 290 p.
17. Koroteev A.A., Safronov A.A., Filatov N.I. Teplofizika vyso-kih temperatur – in Russ. (High Temperature Thermophysics), 2016, vol. 54, No. 5, pp. 817–820.
18. Nusinov M.D. Vliyanie kosmicheskogo vakuuma na materialy i ustroystva nauchnoy apparatury (The Influence of the Cosmic Vacuum on Materials and Devices of Scientific Equipment). M.: Mashinostroenie, 1987, 48 p.
19. Blashenkov N.M, Lavrent'ev G.Ya. Uspekhi fizicheskih nauk – in Russ. (Achievements of Physical Sciences), 2007, vol. 177, No. 1, pp. 59–85.
20. Danilkin V.А. Teplofizika i aeromekhanika – in Russ. (Thermophysics and Aeromechanics), 2008, vol. 5, No. 1, pp. 75–78.
21. Meyer-Vernet N. Flip-Flop of Electric Potential of Dust Grains in Space. – Astronomy and Astrophysics, 1981, 105, pp. 98–106.
Published
2024-05-01
Section
Article