Influence of Rain on the Discharge Characteristics of Linear Polymeric Insulation
Abstract
The article presents the results of studies on the effect of artificial rain on the discharge processes along 110-500 kV linear polymeric insulation (LPI) that occur under the influence of standard lightning and switching voltage impulses of positive and negative polarities. The obtained results are analyzed proceeding from solution of the equation of voltage balance across the insulation at the complete flashover occurrence moment. It is shown that for all of the examined insulation designs, the discharge processes in them caused by the effect of positive polarity impulses either do not depend or depend only slightly on the test conditions (in a dry state or under rain conditions). The discharge is formed mainly along a purely air path, due to which rain either does not affect or affects insignificantly the LPI electrical strength. A strong negative effect of rain on the discharge characteristics of linear insulation is manifested only in the case of negative polarity impulses. In this case, a sharp decrease in the 50% insulation breakdown voltages (in the extreme case, down to 30-36%) is accompanied by the appearance of upward moving negative cascade leader flashovers, which extend to more than half of the insulation length. As a result, the insulation electrical strength turns to be noticeably lower than with impulses of positive polarity, which must be taken into account in designing the 110–500 kV LPI.
References
2. Znaidi R., Al-Thagafi A., Douchti M. Gccia Pollution Test Station Part II:Field Assessment & Test Station Results. – CIGRE, 2018, rep. D1-318.
3. Miyaka H. et al. Investigation of Composite Insulators in Extreme Environments – Heavy Snow and Severe Pollution. – CIGRE, 2014, rep. A3_305.
4. Ansorge S., Baer C., Schmuck F. Comparative Investigations of Hydrophobicity Effects and Erosion Resistance of Silicone Rubber used for Housings of AC and DC Insulators. – CIGRE, 2016, rep. В2_306.
5. Butler J., Hubbell P.E. Advances in Testing Polymer Insulators at Transmission Voltages. – INMR World Congress, 2015, vol. 1, pp. 37–44.
6. Корявин А.Р., Волкова О.В., Милкин Е.А. Влияние дождя и формы импульсного напряжения на электрическую прочность линейной полимерной изоляции высокого и сверхвысокого напряжения. – Электричество, 2011, № 9, с. 10–19.
7. ГОСТ 28856-90. Изоляторы линейные подвесные стержневые полимерные. Общие технические условия. М.: ИПК Издательство стандартов, 2005, 16 с.
8. ГОСТ Р 55189-12. Изоляторы линейные подвесные стержневые полимерные. Общие технические условия. М.: Стандартинформ, 2014, 24 с.
9. Горин Б.Н., Шкилев А.В. Развитие электрического разряда в длинных воздушных промежутках при импульсном напряжении положительной полярности. – Электричество, 1974, № 2, с. 29–38.
10. Горин Б.Н., Шкилев А.В. Развитие электрического разряда в длинных промежутках стержень–плоскость при отрицательном импульсном напряжении. – Электричество, 1976, № 6, c. 31–39.
11. Корявин А.Р. Электрическая прочность внешней изоляции. М.: Издательство МЭИ, 2018, 224 с.
12. Positive Discharge in Long Air Gaps at Les Renardieres. – 1975 Results and Conclusions by the Les Renardieres Group. – Electra, 1977, No. 53, pp. 31–153.
13. Базелян Э.М., Горин Б.Н., Левитов В.И. Некоторые задачи исследования лидерного пробоя в воздухе. – Известия АН СССР. Энергетика и транспорт, 1975, № 5, с. 30–38.
14. Research on Long Air Gap Discharges at Les Renardieres by the “Les Renardieres Group”. – Electra, 1974, vol. 35, pp. 49–156.
15. Negative Discharges in Long Air Gaps at Les Renardieres. 1978 Results. – Electra–Cigre, 1981, vol. 74, pp. 70–216.
16. Morgenstern G. Grenzschteffekte an Nassen Isolatoren. – Hermsdorfer Technische Mitteilungen,1960, No.1, pp. 23–28.
#
1. Zaripov D.К. et al. Izvestiya vysshih uchebnyh zavedeniy. Problemy energetiki – in Russ. (News of Higher Educational Institutions. Energy Industry Problems), 2023, vol. 25, No. 5, pp. 20–29.
2. Znaidi R., Al-Thagafi A., Douchti M. Gccia Pollution Test Station Part II:Field Assessment & Test Station Results. – CIGRE, 2018, rep. D1-318.
3. Miyaka H. et al. Investigation of Composite Insulators in Extreme Environments – Heavy Snow and Severe Pollution. – CIGRE, 2014, rep. A3_305.
4. Ansorge S., Baer C., Schmuck F. Comparative Investigations of Hydrophobicity Effects and Erosion Resistance of Silicone Rubber used for Housings of AC and DC Insulators. – CIGRE, 2016, rep. В2_306.
5. Butler J., Hubbell P.E. Advances in Testing Polymer Insulators at Transmission Voltages. – INMR World Congress, 2015, vol. 1, pp. 37–44.
6. Koryavin A.R., Volkova O.V., Milkin Е.А. Elektrichestvo – in Russ. (Electricity), 2011, No. 9, pp. 10–19.
7. GОSТ 28856-90. Izolyatory lineynye podvesnye sterzhnevye polimernye. Obshchie tekhnicheskie usloviya (Line Suspension Polymeric Rod Insulators. General Specifications). M.: IPK Izdatel'stvo standartov, 2005, 16 p.
8. GОSТ R 55189-12. Izolyatory lineynye podvesnye sterzhnevye polimernye. Obshchie tekhnicheskie usloviya (Line Suspension Polymeric Rod Insulators. General Specifications). М.: Standartinform, 2014, 24 p.
9. Gorin B.N., Shkilev A.V. Elektrichestvo – in Russ. (Electricity), 1974, No. 2, pp. 29–38.
10. Gorin B.N., Shkilev A.V. Elektrichestvo – in Russ. (Electricity), 1976, No. 6, pp. 31–39.
11. Koryavin A.R. Elektricheskaya prochnost' vneshney izolyatsii (Electrical Strength of External Insulation). M.: Izdatel'stvo MEI, 2018, 224 p.
12. Positive Discharge in Long Air Gaps at Les Renardieres. – 1975 Results and Conclusions by the Les Renardieres Group. – Electra, 1977, No. 53, pp. 31–153.
13. Bazelyan E.M., Gorin B.N., Levitov V.I. Izvestiya AN SSSR. Energetika i transport – in Russ. (Izvestia of the USSR Academy of Sciences. Energy Industry and Transport), 1975, No. 5, pp. 30–38.
14. Research on Long Air Gap Discharges at Les Renardieres by the “Les Renardieres Group”. – Electra, 1974, vol. 35, pp. 49–156.
15. Negative Discharges in Long Air Gaps at Les Renardieres. 1978 Results. – Electra–Cigre, 1981, vol. 74, pp. 70–216.
16. Morgenstern G. Grenzschteffekte an Nassen Isolatoren. – Hermsdorfer Technische Mitteilungen,1960, No.1, pp. 23–28.