Thermal Conductivity of Heterogeneous Polymer Composite Materials Filled with Micro- and Nano-Sized Inorganic Particles

  • Andrey M. KOSTEL'OV
  • Emil' R. MANNANOV
  • Andrey V. PAPKOV
  • Sergey A. NOVOPASHIN
Keywords: polymer composite materials, impregnating electrical insulating varnish, electrical insulating tape, micro- and nano-sized inorganic particles, thermal conductivity of materials

Abstract

The article presents the results from studying the thermal conductivity of heterogeneous polymer composite materials filled with micro- and nano-size inorganic particles in various concentrations. The aim of the studies is to develop electrical insulation materials featuring high thermal conductivity for electrical machine windings. Electrical insulating impregnating varnish EP-9150 and insulation based on the electrical insulating tape Elmikaterm 52409 were used as polymer composite materials, in which the impregnating varnish EP-9150 was used as a binding component. KhK Elinar LLC is the manufacturer of these materials. Inorganic micro-sized particles of hexagonal boron nitride, aluminum oxide, and nano-sized particles of aluminum oxide were used as a filler that increases the polymer composite material thermal conductivity, which were introduced directly into the impregnating varnish in manufacturing the samples. A technology for manufacturing varnish and insulation samples has been developed. A comparative analysis of the dependence of material thermal conductivities on the concentration of micro- and nano-size particles and their combinations is carried out. The dependence of the dielectric loss angle tangent on temperature is determined. Structural studies of material samples were carried out. The study results made it possible to identify technical features and provide practical recommendations for working out approaches to the development of electrical insulation materials featuring high thermal conductivity.

Author Biographies

Andrey M. KOSTEL'OV

(JSC “Power machines”, St.-Petersburg, Russia) – Chief Specialist for Turbogenerator Windings.

Emil' R. MANNANOV

(JSC “Power machines”, St.-Petersburg, Russia) – Design Engineer of the 1st Category.

Andrey V. PAPKOV

(Elinar Holding Company LLC, Ateptsevo, Narofominsky District, Moscow Region, Russia) – Deputy General Director, Cand. Sci. (Eng.).

Sergey A. NOVOPASHIN

(Kutateladze Institute of Thermophysics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia) – Leading Researcher, Dr. Sci. (Phys.-Math.).

References

1. Ngo I.L., Byon C. Thermal Conductivity of Particle-Filled Polymers. – Materials Science, Engineering, Physics, 2016. pp. 554–565, DOI: 10.1016/j.ijheatmasstransfer.2016.02.082.
2. Михеев В.А., Сулаберидзе В.Ш. Расчетно-экспериментальные исследования эффективной теплопроводности композиционных материалов на основе полимеров. – Мир измерений, 2017, № 3, с. 26–28.
3. Pat. US5681883A. Enhanced Boron Nitride Composition and Polymer Based High Thermal Conductivity Molding Compound / R.F. Hill; S.Ph. DaVanzo, 1996.
4. Маннанов Э.Р. и др. Анализ уровня технических разработок полимерных материалов с высокой теплопроводностью для оценки возможности использования в системах изоляции обмоток турбогенераторов. – Известия СПбГЭТУ «ЛЭТИ», 2024, т. 17, № 3, с. 21–35.
5. Tsekmes I.A. et al. Enhancing the Thermal and Electrical Performance of Epoxy Microcomposites with the Addition of Nano-fillers. – IEEE Electrical Insulation Magazine, 2015, vol. 31, No. 3, pp. 32–42, DOI: 10.1109/MEI.2015.7089120.
6. Маннанов Э.Р. О диэлектрических материалах с высокой теплопроводностью для систем электрической изоляции высоковольтных электрических машин: обзор отечественной и зарубежной литературы. – Материаловедение. Энергетика, 2021, т. 27, № 4, с. 42–67.
7. Безбородов А.А. Цобкалло Е.С., Ожегова Т.А. Влияние степени наполнения и структурных особенностей на теплопроводность композиционного материала полипропилен–технический углерод. – Межд. конф. «Физика диэлектриков» (Диэлектрики-2011), 2011, т. 2. с. 135–138.
8. Cahill D.G. et al. Nanoscale Thermal Transport – Journal of Applied Physics, 2003, 93, 793, DOI:10.1063/1.1524305.
9. Lyeo H.-K., Cahill D.G. Thermal Conductance of Interfaces between Highly Dissimilar Materials. – Physical Review B, 2006, 73, DOI: 10.1103/PhysRevB.73.144301.
10. Дмитриев А.С. Введение в нанотеплофизику. М.: БИНОМ. Лаборатория знаний, 2015, 790 c.
11. Hamilton R.L., Crosser O.K. Thermal Conductivity of Heterogeneous Two Component Systems. – Industrial & Engineering Chemistry Fundamentals, 1962, vol. 1, No. 3, pp. 187–191, DOI: 10.1021/i160003a005.
12. Morozova M.A., Novopashin S.A. Influence of Interfacial Phenomena on Viscosity and Thermal Conductivity of Nanofluids. – Interfacial Phenomena and Heat Transfer, 2019, 7(2), pp. 151–165, DOI:10.1615/InterfacPhenomHeatTransfer.2019031015.
13. Batchelor G.K. Brownian Diffusion of Particles with Hydrodynamic Interaction. – Journal of Fluid Mechanics, 1976, vol. 74(1), DOI: 10.1017/S0022112076001663.
14. Nagatani T. Statistical Theory of Effective Viscosity in a Random Suspension. – Journal of the Physical Society of Japan, 1979, vol. 47, pp. 320–326, DOI: 10.1143/JPSJ.47.320.
15. Bedeaux D., Kapral R., Mazur P. The Effective Shear Viscosity of a Uniform Suspension of Spheres. – Physica A, 1977, 88(1), pp. 88–121, DOI: 10.1016/0378-4371(77)90159-5.
16. Pak B.C., Cho Y.I. Hydrodynamic and Heat Trans fer Study of Dispersed Fluids with Submicron Metallic Oxide Particles. – Experimental Heat Transfer, 1998, vol. 11, No. 2, pp. 151–170, DOI:10.1080/08916159808946559.
17. Namburu P.K. et al. Experimental Investigation of Viscosity and Specific Heat of Silicon Dioxide Nanofluids. – Micro & Nano Letters, 2007, vol. 2, pp. 67–71, DOI:10.1049/mnl:20070037.
18. Рудяк В.Я., Белкин А.А., Егоров В.В. Об эффективной вязкости наносуспензий. – Журнал технической физики, 2009, т. 79, с. 18–25.
19. Биржин А.П., Серебрянников С.В. Производство современных материалов для изоляции электрических машин. – Электричество, 2023, № 8, с. 54–59.
20. Stepanov V.S. et al. Effective Heat Conductivity of Polymeric Composite Materials: The Influence of Component Properties. – St. Petersburg Polytechnical State University Journal. Physics and Mathematics, 2018, 11 (4), pp. 80–89, DOI: 10.18721/JPM.11408.
21. Папков А.В., Лучко Д.В. Оценка влагостойкости систем изоляции класса нагревостойкости Н (180 °С). – Электричество, 2023, № 11, с. 59–66.
#
1. Ngo I.L., Byon C. Thermal Conductivity of Particle-Filled Polymers. – Materials Science, Engineering, Physics, 2016. pp. 554–565, DOI: 10.1016/j.ijheatmasstransfer.2016.02.082.
2. Miheev V.A., Sulaberidze V.Sh. Mir izmereniy – in Russ. (Measurement World), 2017, No. 3, pp. 26–28.
3. Pat. US5681883A. Enhanced Boron Nitride Composition and Polymer Based High Thermal Conductivity Molding Compound / R.F. Hill; S.Ph. DaVanzo, 1996.
4. Mannanov E.R. et al. Izvestiya SPbGETU «LETI» – in Russ. (Izvestiya SPbGETU "LETI"), 2024, vol. 17, No. 3, pp. 21–35.
5. Tsekmes I.A. et al. Enhancing the Thermal and Electrical Performance of Epoxy Microcomposites with the Addition of Nanofillers. – IEEE Electrical Insulation Magazine, 2015, vol. 31, No. 3, pp. 32–42, DOI: 10.1109/MEI.2015.7089120.
6. Mannanov E.R. Materialovedenie. Energetika – in Russ. (Ma-terials Science. Power Engineering), 2021, vol. 27, No. 4, pp. 42–67.
7. Bezborodov A.A. Tsobkallo E.S., Ozhegova Т.А. Mezhd. konf. «Fizika dielektrikov» (Dielektriki-2011). – in Russ. (Int. Conf. "Physics of Dielectrics" (Dielectrics-2011)), 2011, vol. 2. pp. 135–138.
8. Cahill D.G. et al. Nanoscale Thermal Transport – Journal of Applied Physics, 2003, 93, 793, DOI:10.1063/1.1524305.
9. Lyeo H.-K., Cahill D.G. Thermal Conductance of Interfaces between Highly Dissimilar Materials. – Physical Review B, 2006, 73, DOI: 10.1103/PhysRevB.73.144301.
10. Dmitriev A.S. Vvedenie v nanoteplofiziku (Introduction to Nanoteplophysics). M.: BINOM. Laboratoriya znaniy, 2015, 790 p.
11. Hamilton R.L., Crosser O.K. Thermal Conductivity of Heterogeneous Two Component Systems. – Industrial & Engineering Chemistry Fundamentals, 1962, vol. 1, No. 3, pp. 187–191, DOI: 10.1021/i160003a005.
12. Morozova M.A., Novopashin S.A. Influence of Interfacial Phenomena on Viscosity and Thermal Conductivity of Nanofluids. – Interfacial Phenomena and Heat Transfer, 2019, 7(2), pp. 151–165, DOI:10.1615/InterfacPhenomHeatTransfer.2019031015.
13. Batchelor G.K. Brownian Diffusion of Particles with Hydrodynamic Interaction. – Journal of Fluid Mechanics, 1976, vol. 74(1), DOI: 10.1017/S0022112076001663.
14. Nagatani T. Statistical Theory of Effective Viscosity in a Random Suspension. – Journal of the Physical Society of Japan, 1979, vol. 47, pp. 320–326, DOI: 10.1143/JPSJ.47.320.
15. Bedeaux D., Kapral R., Mazur P. The Effective Shear Viscosity of a Uniform Suspension of Spheres. – Physica A, 1977, 88(1), pp. 88–121, DOI: 10.1016/0378-4371(77)90159-5.
16. Pak B.C., Cho Y.I. Hydrodynamic and Heat Trans fer Study of Dispersed Fluids with Submicron Metallic Oxide Particles. – Experimental Heat Transfer, 1998, vol. 11, No. 2, pp. 151–170, DOI:10.1080/08916159808946559.
17. Namburu P.K. et al. Experimental Investigation of Viscosity and Specific Heat of Silicon Dioxide Nanofluids. – Micro & Nano Letters, 2007, vol. 2, pp. 67–71, DOI:10.1049/mnl:20070037.
18. Rudyak V.Ya., Belkin A.A., Egorov V.V. Zhurnal tekhnicheskoy fiziki – in Russ. (Journal of Technical Physics), 2009, vol. 79, pp. 18–25.
19. Birzhin A.P., Serebryannikov S.V. Elektrichestvo – in Russ. (Electricity), 2023, No. 8, pp. 54–59.
20. Stepanov V.S. et al. Effective Heat Conductivity of Polymeric Composite Materials: The Influence of Component Properties. – St. Petersburg Polytechnical State University Journal. Physics and Mathematics, 2018, 11 (4), pp. 80–89, DOI: 10.18721/JPM.11408.
21. Papkov A.V., Luchko D.V. Elektrichestvo – in Russ. (Electricity), 2023, No. 11, pp. 59–66.
Published
2024-05-01
Section
Article