Assessment of Voltage Distortions in Power Supply Systems of Industrial Enterprises
Abstract
Deviations of the power quality indicators (PQI) from their standardized values in the power supply systems of industrial enterprises entail the issuance of defective products, complete shutdown of technological processes, and significant damage. At the same time, industrial consumers pose different requirements for PQI, with the most stringent ones posed by especially critical electricity receivers. To ensure their reliable operation, it is necessary to implement devices that automatically monitor PQI by evaluating the extent to which the three-phase system sinusoidal voltage waveform is distorted. This information enables the on-duty personnel of power grid companies and industrial enterprises to promptly make decisions on the implementation of measures in the external and internal power supply networks for bringing the PQI into the range of permissible values. A generalized indicator for evaluating the sinusoidal voltage waveform distortion degree is suggested. The proposed indicator is based on the modulus characterizing the ratio of a spatial vector’s positive and negative rotation complex amplitudes. The article presents block diagrams of algorithms and structural diagrams of automatic PQI monitoring devices, in which parametric and nonparametric multi-hypothesis sequential analyses involving the use of the generalized indicator are implemented. In the study, Palmer’s algorithm and the nearest neighbor method are used. The computation results have demonstrated that the developed algorithms feature fast operation and highly efficient detection of PQI deviations.
References
Luo F., Ge N., Xu J. Power Supply Reliability Analysis of Distribution Systems Considering Data Transmission Quality of Distribution Automation Terminals. – Energies, 2023, vol. 16, 7826, DOI:10.3390/en16237826.
Praiselin W.J., Edward J.B. A Review on Impacts of Power Quality, Control and Optimization Strategies of Integration of Renewable Energy Based Microgrid Operation. – International Journal of Intelligent Systems and Applications, 2018, vol. 10, No. 3, pp. 67–81, DOI:10.5815/IJISA.2018.03.08.
Папков Б.В., Куликов А.Л., Илюшин П.В. Задачи надежности современного электроснабжения. М.: Инфра-Инженерия, 2022, 260 с.
Ribeiro P.F. et al. Power Systems Signal Processing for Smart Grids. John Wiley & Sons Ltd, 2013, 448 p.
Suslov K.V., Stepanov V.S., Solonina N.N. Smart Grid: Effect of High Harmonics on Electricity Consumers in Distribution Networks. – IEEE International Symposium on Electromagnetic Compatibility, 2013, pp. 841–845.
Вагин Г.Я., Куликов А.Л., Севостьянов А.А. Качество электроэнергии. анализ причин больших ущербов от низкого качества и рекомендации по их снижению. – Энергобезопасность и энергосбережение, 2023, № 2, с. 81–87.
Mishra S. et al. Microgrid Resilience: a Holistic Approach for Assessing Threats, Identifying Vulnerabilities, and Designing Corresponding Mitigation Strategies. – Applied Energy, 2020, vol. 264, DOI:10.1016/j.apenergy.2020.114726.
Sinchuk O. et al. Model Studies to identify input parameters of an algorithm controlling electric supply/consumption process by underground iron ore enterprises. – Mining of Mineral Deposits, 2023, vol. 17, No. 3, pp. 93–101, DOI: 10.33271/mining17.03.093.
Rakhmonov I. et al. General characteristics of networks and features of electricity consumers in rural areas. – IOP Conference Series: Materials Science and Engineering, 2020, vol. 883, 012104, DOI:10.1088/1757-899X/883/1/012104.
ГОСТ 32144-2013. Электрическая энергия. Совместимость технических средств электромагнитная. Нормы качества электрической энергии в системах электроснабжения общего назначения. М.: Стандартинформ, 2014, 16 с.
EN 50160. Voltage Characteristics of Electricity Supplied by Public Electricity Networks. CENELEC, 2010, 34 p.
Ignatova V., Granjon P., Bacha S. Space Vector Method for Voltage Dips and Swells Analysis. – IEEE Transactions on Power Delivery, 2009, vol. 24, No. 4, pp. 2054–2061, DOI: 10.1109/TPWRD.2009.2028787.
Palmer L.C. Sequential Tests to Select Among M Hypotheses. – IEEE Transaction Information Theory, 1972, IT-18, pp. 211–214, DOI:10.1109/TIT.1972.1054735.
Basholli F., Daberdini A. Monitoring and Assessment of the Quality of Electricity in a Building. – Engineering Applications, 2023, vol. 2, pp. 32–48, DOI:10.33285/1999-6934-2023-6(138)-65-70.
Zhang X.J., Xu Y.H., Xiao X.N. Power Quality Disturbance Detection and Identification Based on dq Conversion and Wavelet Transform. – Electric Power Automation Equipment, 2005, vol. 25(7), pp. 1–5.
Zhao F., Rengang Y. Power Quality Disturbance Recognition Using S-transform. – IEEE Transactions on Power Delivery, 2007, vol. 22, No. 2, pp. 944–950, DOI:10.1109/TPWRD.2006.881575.
Куликов А.Л. и др. Выборочный контроль показателей качества электроэнергии в распределительных сетях с большой долей генерации на основе возобновляемых источников энергии. – Электричество, 2022, № 7, c. 11–23.
Balouji E., Salor O. Classification of Power Quality Events Using Deep Learning on Event Images. – 3rd International Conference on Pattern Recognition and Image Analysis (IPRIA), 2017,pp. 216–221, DOI:10.1109/PRIA.2017.7983049.
Ma J. et al. Classification of Power Quality Disturbances Via Deep Learning. – IETE Technical Review, 2016, vol. 34, No. 4, pp. 408–415, DOI:10.1080/02564602.2016.1196620.
Куликов А.Л. и др. Обеспечение когерентности цифровой обработки сигналов токов и напряжений электроэнергетических систем при снижении частоты дискретизации. – Электричество, 2020, № 8, c. 5–16.
Cong J. The Use of Wavelet Modulus Maximum Principle in the Detection of Disturbance Signal for Transient Power Quality. – Northeast Electric Power Technology, 2009, vol. 30(5), pp. 10–13, DOI:10.3390/app11062825.
Chilukuri M.V., Dash P.K. Multiresolution S-transform-Based Fuzzy Recognition System for Power Quality Events. – IEEE Transactions on Power Delivery, 2004, vol. 19, No. 1, pp. 323–330, DOI:10.1109/TPWRD.2004.835418(410).
Ling L., Xu Z. Mathematical Morphology Based Detection and Classification of Dynamic Power Quality Disturbances. – Power System Technology, 2006, vol. 30(5), pp. 62–66, DOI:10.17775/CSEEJPES.2022.04430.
Khoa N.M., Dai L.V. Detection and Classification of Power Quality Disturbances in Power System Using Modified-Combination between the Stockwell Transform and Decision Tree Methods. – Energies, 2020, vol. 13, 3623, DOI:10.3390/en13143623.
Lu G. et al. Power Quality Disturbances Detection and Identification Based on S-Transform and Multi-Lay SVMs. – Transactions of China Electrotechnical Society, 2006, vol. 21, No. 1, pp. 121–126.
Axelberg P.G.V., Gu I.Y.H., Bollen M.H.J. Support Vector Machine for Classification of Voltage Disturbances. – IEEE Transactions on Power Delivery, 2007, vol. 22, No. 3, pp. 1297–1303, DOI:10.1109/TPWRD.2007.900065.
Ghosh A.K., Lubkeman D.L. The Classification of Power System Disturbance Waveforms Using a Neural Network Approach. – IEEE Transactions on Power Delivery, 1990, vol. 10, 671683, DOI:10.1109/61.368408.
Zhao Y. et al. Power Quality Disturbances Identification Based on dq Conversion, Wavelet Transform and FFT. – Asia-Pacific Power and Energy Engineering Conference, 2010, DOI:10.1109/APPEEC.2010.5448526.
Kulikov A.L., Ilyushin P.V., Sevostyanov A.A. Application of Statistical Sampling Control when Monitoring Power Quality Indices in Modern Power Supply Systems. – Russian Electrical Engineering, 2022, vol. 4, pp. 46–53, DOI:10.3103/S1068371222040071.
Kostadinov D., Taskovski D. Automatic voltage disturbance detection and classification using wavelets and multiclass logistic regression. – IEEE International Instrumentation and Measurement Technology Conference (I2MTC), 2012, pp. 103–106, DOI:10.1109/I2MTC.2012.6229122.
Zhang M., Zhan Y., He S. Power Quality Data Compression Based on Iterative PCA Algorithm in Smart Distribution Systems. – Smart Grid and Renewable Energy, 2017, vol. 8, pp. 366–378, DOI:10.4236/sgre.2017.812024.
Qu X. et al. An Identification and Location Method for Power Quality Disturbance Sources in MMC Converter Based on KNN Algorithm. – 4th International Conference on Energy, Electrical and Power Engineering (CEEPE), 2021, DOI:10.1109/CEEPE51765.2021.9475801.
Куликов А.Л., Илюшин П.В., Севостьянов А.А. Применение статистических методов при организации выборочного контроля показателей качества электрической энергии в сетях электроснабжения промышленных предприятий. – Электрические станции, 2021, № 12, c. 28–37.
Ibrahim W.R.A., Morcos M.M. Artificial Intelligence and Advanced Mathematical Tools for Power Quality Applications: A Survey. – IEEE Power Engineering Review, 2002, vol. 17, No. 2, pp. 668–673, DOI:10.1109/61.997958.
Granados-Lieberman D. et al. Techniques and Methodologies for Power Quality Analysis and Disturbances Classification in Power Systems: A Review. – IET Generation, Transmission and Distribution, 2011, vol. 5, pp. 519–529, DOI:10.1049/iet-gtd.2010.0466.
Liu H. et al. A Power Quality Disturbance Classification Method Based on Park Transform and Clarke Transform Analysis. – 3rd International Conference on Innovative Computing Information and Control, 2008, DOI: 10.1109/ICICIC.2008.77.
Xia Y., Mandic D.P. Widely Linear Adaptive Frequency Estimation of Unbalanced Three-Phase Power Systems. – IEEE Transactions on Instrumentation and Measurement, 2012, vol. 61, No. 1, pp. 74–83, DOI:10.4302/plp.v13i2.1094.
Xia Y. et al. A Balancing Voltage Transformation for Robust Frequency Estimation in Unbalanced Power Systems. – Signal and Information Processing Association Annual Summit and Conference (APSIPA), 2014, DOI:10.1109/APSIPA.2014.7041682.
Wald A. Sequential Analysis. – New York: John Wiley and Sons, 1947.
Jouny I., Garber F.D. M-Ary Sequential Hypothesis Tests for Automatic Target Recognition. – IEEE Transaction on Aerospace and Electronic Systems, 1992, vol. 28, No. 2, pp. 473–483, DOI:10.1109/7.144573.
Венцель Е.С. Теория вероятностей. М.: Высшая школа, 2001, 575 с.
Шнеерсон Э.М. Цифровая релейная защита. М: Энергоатомиздат, 2007, 548 с.
Кислицын А.А., Кислицына М.Ю. Распознавание выборочных распределений среди системы эталонов: метод ближайшего соседа. Препринты ИПМ им. М.В. Келдыша, 2023, № 29, 21 с.
#
Luo F., Ge N., Xu J. Power Supply Reliability Analysis of Distribution Systems Considering Data Transmission Quality of Distribution Automation Terminals. – Energies, 2023, vol. 16, 7826, DOI:10.3390/en16237826.
Praiselin W.J., Edward J.B. A Review on Impacts of Power Quality, Control and Optimization Strategies of Integration of Renewable Energy Based Microgrid Operation. – International Journal of Intelligent Systems and Applications, 2018, vol. 10, No. 3, pp. 67–81, DOI:10.5815/IJISA.2018.03.08.
Papkov B.V., Kulikov A.L., Ilyushin P.V. Zadachi nadezhnosti sovremennogo elektrosnabzheniya (Problems of Modern Power Supply Reliability). M.: Infra-Inzheneriya, 2022, 260 p.
Ribeiro P.F. et al. Power Systems Signal Processing for Smart Grids. John Wiley & Sons Ltd, 2013, 448 p.
Suslov K.V., Stepanov V.S., Solonina N.N. Smart Grid: Effect of High Harmonics on Electricity Consumers in Distribution Networks. – IEEE International Symposium on Electromagnetic Compatibility, 2013, pp. 841–845.
Vagin G.YA., Kulikov A.L., Sevost'yanov A.A. Energobezo-pasnost' i energosberezhenie – in Russ. (Energy Security and Energy Conservation), 2023, No. 2, pp. 81–87.
Mishra S. et al. Microgrid Resilience: a Holistic Approach for Assessing Threats, Identifying Vulnerabilities, and Designing Corresponding Mitigation Strategies. – Applied Energy, 2020, vol. 264, DOI:10.1016/j.apenergy.2020.114726.
Sinchuk O. et al. Model Studies to identify input parameters of an algorithm controlling electric supply/consumption process by underground iron ore enterprises. – Mining of Mineral Deposits, 2023, vol. 17, No. 3, pp. 93–101, DOI: 10.33271/mining17.03.093.
Rakhmonov I. et al. General characteristics of networks and features of electricity consumers in rural areas. – IOP Conference Series: Materials Science and Engineering, 2020, vol. 883, 012104, DOI:10.1088/1757-899X/883/1/012104.
GOST 32144-2013. Elektricheskaya energiya. Sovmestimost' tekhnicheskikh sredstv elektromagnitnaya. Normy kachestva elektricheskoy energii v sistemakh elektrosnabzheniya obshchego na-znacheniya (Electric Energy. Electromagnetic Compatibility of Technical Equipment. Power Quality Limits in the Public Power Supply Systems). M.: Standartinform, 2014, 16 p.
EN 50160. Voltage Characteristics of Electricity Supplied by Public Electricity Networks. CENELEC, 2010, 34 p.
Ignatova V., Granjon P., Bacha S. Space Vector Method for Voltage Dips and Swells Analysis. – IEEE Transactions on Power Delivery, 2009, vol. 24, No. 4, pp. 2054–2061, DOI: 10.1109/TPWRD.2009.2028787.
Palmer L.C. Sequential Tests to Select Among M Hypothe-ses. – IEEE Transaction Information Theory, 1972, IT-18, pp. 211–214, DOI:10.1109/TIT.1972.1054735.
Basholli F., Daberdini A. Monitoring and Assessment of the Quality of Electricity in a Building. – Engineering Applications, 2023, vol. 2, pp. 32–48, DOI:10.33285/1999-6934-2023-6(138)-65-70.
Zhang X.J., Xu Y.H., Xiao X.N. Power Quality Disturbance Detection and Identification Based on dq Conversion and Wavelet Transform. – Electric Power Automation Equipment, 2005, vol. 25(7), pp. 1–5.
Zhao F., Rengang Y. Power Quality Disturbance Recognition Using S-transform. – IEEE Transactions on Power Delivery, 2007, vol. 22, No. 2, pp. 944–950, DOI:10.1109/TPWRD.2006.881575.
Kulikov A.L. et al. Elektrichestvo – in Russ. (Electricity), 2022, No. 7, pp. 11–23.
Balouji E., Salor O. Classification of Power Quality Events Using Deep Learning on Event Images. – 3rd International Conference on Pattern Recognition and Image Analysis (IPRIA), 2017, pp. 216–221, DOI:10.1109/PRIA.2017.7983049.
Ma J. et al. Classification of Power Quality Disturbances Via Deep Learning. – IETE Technical Review, 2016, vol. 34, No. 4, pp. 408–415, DOI:10.1080/02564602.2016.1196620.
Kulikov A.L. et al. Elektrichestvo – in Russ. (Electricity), 2020, No. 8, pp. 5–16.
Cong J. The Use of Wavelet Modulus Maximum Principle in the Detection of Disturbance Signal for Transient Power Quality. – Northeast Electric Power Technology, 2009, vol. 30(5), pp. 10–13, DOI:10.3390/app11062825.
Chilukuri M.V., Dash P.K. Multiresolution S-transform-Based Fuzzy Recognition System for Power Quality Events. – IEEE Transactions on Power Delivery, 2004, vol. 19, No. 1, pp. 323–330, DOI:10.1109/TPWRD.2004.835418(410).
Ling L., Xu Z. Mathematical Morphology Based Detection and Classification of Dynamic Power Quality Disturbances. – Power System Technology, 2006, vol. 30(5), pp. 62–66, DOI:10.17775/CSEEJPES.2022.04430.
Khoa N.M., Dai L.V. Detection and Classification of Power Quality Disturbances in Power System Using Modified-Combination between the Stockwell Transform and Decision Tree Methods. – Energies, 2020, vol. 13, 3623, DOI:10.3390/en13143623.
Lu G. et al. Power Quality Disturbances Detection and Identification Based on S-Transform and Multi-Lay SVMs. – Transactions of China Electrotechnical Society, 2006, vol. 21, No. 1, pp. 121–126.
Axelberg P.G.V., Gu I.Y.H., Bollen M.H.J. Support Vector Machine for Classification of Voltage Disturbances. – IEEE Transactions on Power Delivery, 2007, vol. 22, No. 3, pp. 1297–1303, DOI:10.1109/TPWRD.2007.900065.
Ghosh A.K., Lubkeman D.L. The Classification of Power System Disturbance Waveforms Using a Neural Network Appro-ach. – IEEE Transactions on Power Delivery, 1990, vol. 10, 671683, DOI:10.1109/61.368408.
Zhao Y. et al. Power Quality Disturbances Identification Based on dq Conversion, Wavelet Transform and FFT. – Asia-Pacific Power and Energy Engineering Conference, 2010, DOI:10.1109/APPEEC.2010.5448526.
Kulikov A.L., Ilyushin P.V., Sevostyanov A.A. Application of Statistical Sampling Control when Monitoring Power Quality Indices in Modern Power Supply Systems. – Russian Electrical Engineering, 2022, vol. 4, pp. 46–53, DOI:10.3103/S1068371222040071.
Kostadinov D., Taskovski D. Automatic voltage disturbance detection and classification using wavelets and multiclass logistic regression. – IEEE International Instrumentation and Measurement Technology Conference (I2MTC), 2012, pp. 103–106, DOI:10.1109/I2MTC.2012.6229122.
Zhang M., Zhan Y., He S. Power Quality Data Compression Based on Iterative PCA Algorithm in Smart Distribution Systems. – Smart Grid and Renewable Energy, 2017, vol. 8, pp. 366–378, DOI:10.4236/sgre.2017.812024.
Qu X. et al. An Identification and Location Method for Power Quality Disturbance Sources in MMC Converter Based on KNN Algorithm. – 4th International Conference on Energy, Electrical and Power Engineering (CEEPE), 2021, DOI:10.1109/CEEPE51765.2021.9475801.
Kulikov A.L., Ilyushin P.V., Sevost'yanov А.А. Elektricheskie stantsii – in Russ. (Power Plants), 2021, No. 12, pp. 28–37.
Ibrahim W.R.A., Morcos M.M. Artificial Intelligence and Advanced Mathematical Tools for Power Quality Applications: A Survey. – IEEE Power Engineering Review, 2002, vol. 17, No. 2, pp. 668–673, DOI:10.1109/61.997958.
Granados-Lieberman D. et al. Techniques and Methodologies for Power Quality Analysis and Disturbances Classification in Power Systems: A Review. – IET Generation, Transmission and Distribution, 2011, vol. 5, pp. 519–529, DOI:10.1049/iet-gtd.2010.0466.
Liu H. et al. A Power Quality Disturbance Classification Method Based on Park Transform and Clarke Transform Analysis. – 3rd International Conference on Innovative Computing Information and Control, 2008, DOI: 10.1109/ICICIC.2008.77.
Xia Y., Mandic D.P. Widely Linear Adaptive Frequency Estimation of Unbalanced Three-Phase Power Systems. – IEEE Transactions on Instrumentation and Measurement, 2012, vol. 61, No. 1, pp. 74–83, DOI:10.4302/plp.v13i2.1094.
Xia Y. et al. A Balancing Voltage Transformation for Robust Frequency Estimation in Unbalanced Power Systems. – Signal and Information Processing Association Annual Summit and Conference (APSIPA), 2014, DOI:10.1109/APSIPA.2014.7041682.
Wald A. Sequential Analysis. – New York: John Wiley and Sons, 1947.
Jouny I., Garber F.D. M-Ary Sequential Hypothesis Tests for Automatic Target Recognition. – IEEE Transaction on Aerospace and Electronic Systems, 1992, vol. 28, No. 2, pp. 473–483, DOI:10.1109/7.144573.
Ventsel' E.S. Teoriya veroyatnostey (Probability theory). M.: Vysshaya shkola, 2001, 575 p.
Shneerson E.M. Tsifrovaya releynaya zashchita (Digital Relay Protection). M: Energoatomizdat, 2007, 548 p.
Kislitsyn A.A., Kislitsyna M.Yu. Preprinty IPM im. M.V. Keldysha – in Russ. (Preprints of the IPM n. a. M.V. Keldysh), 2023, No. 29, 21 p.