Transmission Capacity of Long-Distance Power Lines Equipped with Shunt Compensation Devices

  • Konstantin E. KOSHEVOY
  • Tatyana G. KRASILNIKOVA
Keywords: long-distance power line, shunt compensation, series capacitive compensation, transmission capacity, steady state stability, voltage distribution, no load operation conditions, maximum power transmission operation conditions

Abstract

The article discusses a methodology for substantiating the transmission capacity of a long-distance power line equipped with shunt compensation devices. It has been determined that the transmission capacity of a long-distance power line is only limited by a condition of maintaining the standardized static stability margin, whereas the distribution of voltages along the line turns out to be permissible in all modes. The article considers power line versions with a double-circuit line and with a single-circuit line equipped with a shunt compensation device, both having the same transmission capacity. The transmission capacity substantiation is illustrated on the example of a 500 kV long-distance power line with a length of 1000 km. The version with the required capacity equal to 1470 MW involves the need to install two shunt compensation devices in the line middle part. A technical and economic comparison is carried for the versions of a double-circuit line, a single-circuit line equipped with two series capacitive compensation devices, and a single-circuit line equipped with two shunt compensation devices, each having the same transmission capacity. The comparative analysis results have shown that the version with shunt compensation devices is more economically efficient than the version involving the use of series capacitive compensation, the investments and reduced costs for which are almost a factor of 1.5 higher than those for the former.

Author Biographies

Konstantin E. KOSHEVOY

(Branch of the JSC «System Operator of the United Power System» "Regional Dispatching Department of the Energy System of the Tyumen Region, Khanty-Mansiysk Autonomous Okrug – Yugra and Yamalo-Nenets Autonomous Okrug" (Tyumen RD), Surgut; Novosibirsk State Technical University, Novosibirsk, Russia) – Dispatcher of the Operational Dept. of the Operational Dispatch Service; Postgraduate Student of the Power Engineering Dept.

Tatyana G. KRASILNIKOVA

(Novosibirsk State Technical University, Novosibirsk, Russia) – Professor of the Power Engineering Dept., Dr. Sci. (Eng.), Docent.

References

1. Рыжов Ю.П. Дальние электропередачи сверхвысокого напряжения. М.: Издательский дом МЭИ, 2007, 488 с.
2. Ивакин В.Н., Сысоева Н.Г., Худяков В.В. Электропередачи и вставки постоянного тока, и статические тиристорные компенсаторы. М.: Энергоатомиздат, 1993, 334 с.
3. Красильникова Т.Г., Самородов Г.И. Физико-технические основы дальних электропередач переменного тока. Новосибирск: НГТУ, 2019, 300 с.
4. Дмитриев М. Требования к компенсации зарядной мощности линий 500–750 кВ. – Новости ЭлектроТехники, 2021, № 2(128)-3(129).
5. Дьяков А.Ф. и др. Электрические сети сверх- и ультравысокого напряжения ЕЭС России. Теоретические и практические основы. В 3 т. / Под ред. А.Ф. Дьякова. М.: "Энергопрогресс" Корпорация "ЕЭЭК", 2012.
6. Александров Г.Н. Режимы работы воздушных линий электропередачи. М.: Центр подготовки кадров энергетики, 2006, 139 с.
7. Кочкин В.И., Нечаев О.П. Применение статических компенсаторов реактивной мощности в электрических сетях энергосистем и предприятий. М.: ЭНАС, 2000, 248 с.
8. Hingorani N.G., Guygyi L. Understanding FACTS: Concept and Technology of Flexible AC Transmission Systems. Piscataway, NJ: IEEE Press, 2000, 452 p.
9. Дмитриев М.В. и др. Управляемые подмагничиванием шунтирующие реакторы / под ред. Г.А. Евдокунина. СПб: Родная Ладога, 2013, 280 с.
10. Ершевич В.В. и др. Справочник по проектированию электроэнергетических систем /под ред. С.С. Рокотяна, И.М. Шапиро. М: Энергоатомиздат, 1985, 192 с.
11. Самородов Г.И., Красильникова Т.Г., Кошевой К.Э. Пропускная способность дальних электропередач с установкой продольной компенсации. – Электричество, 2020, № 3, с. 12−17.
12. Методические рекомендации по оценке эффективности инвестиционных проектов. М.: Экономика, 2000, 421 с.
13. Красильникова Т.Г. Модифицированные критерии для оценки экономической эффективности энергетических объектов. − Известия РАН. Энергетика, 2010, № 6, с. 84−91.
14. Мелентьев Л.А. Системные исследования в энергетике. Элементы теории, направления развития. М.: Наука, 1983, 455 с.
15. Справочник по проектированию электрических сетей / под ред. Д.Л. Файбисовича. М.: ЭНАС, 2012, 376 c.
#
1. Ryzhov Yu.P. Dal'nie elektroperedachi sverhvysokogo napryazheniya (Long-Range Ultrahigh Voltage Power Transmission). M.: Izdatel'skiy dom MEI, 2007, 488 p.
2. Ivakin V.N., Sysoeva N.G., Hudyakov V.V. Elektroperedachi i vstavki postoyannogo toka, i staticheskie tiristornye kompensatory (Power Transmission and DC Inserts, and Static Thyristor Compensators). М.: Energoatomizdat, 1993, 334 p.
3. Krasil'nikova T.G., Samorodov G.I. Fiziko-tekhnicheskie osnovy dal'nih elektroperedach peremennogo toka (Physical and Technical Fundamentals of Long-Range AC Power Transmission). Novosibirsk: NGTU, 2019, 300 p.
4. Dmitriev М. Novosti Elektrotekhniki – in Russ. (Electrical Engineering News), 2021, No. 2(128)-3(129).
5. D'yakov A.F. et al. Elektricheskie seti sverh- i ul'travysokogo napryazheniya EES Rossii. Teoreticheskie i prakticheskie osnovy. V 3 t. (Electric Networks of Ultra- and Ultra-High Voltage of the UES of Russia. Theoretical and practical foundations. In 3 volumes) / Ed. by A.F. Dyakov. M.: "Energoprogress" Korporatsiya "EEEK", 2012.
6. Aleksandrov G.N. Rezhimy raboty vozdushnyh liniy elektroperedachi (Operation Modes of Overhead Power Transmission Lines). M.: Tsentr podgotovki kadrov energetiki, 2006, 139 p.
7. Kochkin V.I., Nechaev O.P. Primenenie staticheskih kompen-satorov reaktivnoy moshchnosti v elektricheskih setyah energosistem i predpriyatiy (Application of Static Reactive Power Compensators in Electrical Networks of Power Systems and Enterprises). М.: ENAS, 2000, 248 p.
8. Hingorani N.G., Guygyi L. Understanding FACTS: Concept and Technology of Flexible AC Transmission Systems. Piscataway, NJ: IEEE Press, 2000, 452 p.
9. Dmitriev M.V. et al. Upravlyaemye podmagnichivaniem shuntiruyushchie reaktory (Magnetization-Controlled Shunting Reac-tors) / Ed. By G.A. Evdokunin. SPb.: Rodnaya Ladoga, 2013, 280 p.
10. Ershevich V.V. et al. Spravochnik po proektirovaniyu elektro-energeticheskih sistem (Handbook on the Design of Electric Power Systems) /Ed. by. S.S. Rokotyan, I.M. Shapiro. M: Energoatomizdat, 1985, 192 p.
11. Samorodov G.I., Krasil'nikova T.G., Koshevoy K.E. Elektrichestvo – in Russ. (Electricity), 2020, No. 3, pp. 12−17.
12. Metodicheskie rekomendatsii po otsenke effektivnosti investitsionnyh proektov (Methodological Recommendations for Evaluating the Effectiveness of Investment Projects). M.: Ekonomika, 2000, 421 p.
13. Krasil'nikova T.G. Izvestiya RAN. Energetika – in Russ. (News of the Russian Academy of Sciences. Energy Industry), 2010, No. 6, pp. 84−91.
14. Melent'ev L.A. Sistemnye issledovaniya v energetike. Elementy teorii, napravleniya razvitiya (System Research in Energy. Elements of Theory, Directions of Development). М.: Nauka, 1983, 455 p.
15. Spravochnik po proektirovaniyu elektricheskih setey (Handbook on the Design of Electrical Networks) / Ed. By D.L. Faibisovich. M.: ENAS, 2012, 376 p.
Published
2024-05-01
Section
Article