A Method for Modeling Switching Overvoltages in High-voltage Lines of Underground Networks

  • Muhammad Kheir LAHLAH
  • Yuriy V. MONAKOV
  • Anna D. LKHAMDONDOG
Keywords: power line energizing, switching overvoltages, transients, cable line model, phase-modal transformation, modal channels

Abstract

The article presents the results of the development of a mathematical model of a cable line with distributed parameters for calculating and analyzing the switching overvoltages in high-voltage underground networks. The developed model is implemented in the MATLAB software package. The required computation accuracy is achieved by taking into account the frequency dependence of line parameters, and a significantly shorter computation time is obtained by using the numerical inverse Laplace transform. The novelty of the work lies in the use of the numerical inverse Laplace transform in modeling and in determining the factors influencing the switching overvoltages computation process when using software tools. The developed model was verified by comparing the voltage waveforms in three phases in energizing the line in the no-load mode with similar waveforms obtained using a broadband model in the EMTP software package, which is regarded as one of the most accurate modeling tools for cable lines around the world. The results have shown that in using the developed model, the computation speed is increased by 72 % compared with the broadband model. The cable line model is recommended to be used for predicting the switching overvoltages and other transients in lines requiring consideration of frequency parameters.

Author Biographies

Muhammad Kheir LAHLAH

(National Research University "Moscow Power Engineering Institute", Moscow, Russia; Tishreen University, Latakia, Syria.) – Postgraduate Student of the Electrical Stations Dept.; Assistant of Electrical Stations Dept.; Assistant of Electrical Power Dept.

Yuriy V. MONAKOV

(National Research University "Moscow Power Engineering Institute", Moscow, Russia.) – Head of the Electrical Stations Dept., Cand. Sci. (Eng.), Docent.

Anna D. LKHAMDONDOG

(National Research University "Moscow Power Engineering Institute", Moscow, Russia.) – Docent of the Electrical Stations Dept., Cand. Sci. (Eng.).

References

1. Гусев О.Ю., Гусев Ю.П., Посохов Н.О. Особенности переходных восстанавливающихся напряжений при отключении коротких замыканий в кабельных линиях высоковольтных электрических сетей. – Электротехника, 2023, № 1, с. 50–55.
2. Корявин А.Р., Волкова О.В., Милкин Е.А. Современные проблемы отечественной стандартизации испытательных напряжений и методов испытаний электрооборудования высокого напряжения. – Электричество, 2013, № 7, с. 30–36.
3. Борисов, Р.К. и др. Исследование высокочастотных импульсных перенапряжений на Саяно-Шушенской ГЭС. – Электричество, 2023, № 1, с. 36–43.
4. ГОСТ Р МЭК 62067-2011. Кабели силовые с экструдированной изоляцией и арматура к ним на номинальное напряжение свыше 150 кВ (Um = 170 кВ) до 500 кВ (Um = 550 кВ). Методы испытаний и требования к ним. М.: Стандартинформ, 2017, 31 c.
5. Filipovic-Grcic B. et al. Specific Aspects of Overvoltage Protection in Hydro Power Plant Considering AIS and GIS Connection to the Transmission Network. – Electric Power Systems Research, 2023, vol. 218, DOI: 10.1016/j.epsr.2023.109252.
6. Jiang N. et al. An Investigation of Electromagnetic Transient Characteristics on a Practical 500 kV Submarine Cable System. – Electric Power Systems Research, 2023, vol. 223, DOI: 10.1016/j.epsr.2023.109615.
7. Костенко М.В., Шкарин Ю.П. Волновые процессы и электрические помехи в многопроводных линиях высокого напряжения. М.: Энергия, 1973, 272 с.
8. Dommel H.W. EMTP Theory Book. Canada: Microtran Power System Analysis Corporation, 1996, 483 c.
9. Dommel H.W. Digital Computer Solution of Electromagnetic Transients in Single-and Multiphase Networks. – IEEE Transactions on Power Apparatus and Systems, 1969, vol. PAS-88, No. 4, pp. 388–399, DOI:10.1109/TPAS.1969.292459.
10. Marti L. Simulation of Transients in Underground Cables with Frequency-Dependent Modal Transformation Matrices. – IEEE Transactions on Power Delivery, 1988, vol. 3, No. 3, pp. 1099–1110, DOI:10.1109/61.193892.
11. Martinez M.C. Accurate and Efficient Simulation of Electro-magnetic Transients Using Frequency Dependant Line and Cable Models: Ph. D. diss. Montreal, Canada, 2019, 126 p.
12. Morched A., Gustavsen B., Tartibi M. A Universal Model for Accurate Calculation of Electromagnetic Transients on Overhead Lines and Underground Cables. – IEEE Transactions on Power Delivery, 1999, vol. 14, No. 3, pp. 1032–1038, DOI:10.1109/61.772350.
13. Kocar I., Mahseredjian J., Olivier G. Improvement of Numerically Stability for the Computation of Transients in Lines and Cables. – IEEE Transactions on Power Delivery, 2010, vol. 25, No. 2, pp. 1104–1111, DOI:10.1109/TPWRD.2009.2037633.
14. Ghnimi S., Rajhi A., Gharsallah A. Optimal Algorithm for the Numerical Inversion Laplace Transforms Method in a Multiconductor Transmission Line System. – International Multi-Conference on Systems, Signals and Devices, 2008, DOI:10.1109/SSD.2008.4632803.
15. Ametani A., Ohno T., Nagaoka N. Cable System Transients: Theory, Modeling and Simulation. Singapore: John Wiley & Sons, 2015, 395 p.
16. Костенко М.В. и др. Перенапряжения и защита от них в воздушных и кабельных электропередачах высокого напряжения. Л.: Наука, 1988, 302 с.
17. Ohno T. et al. Derivation of Theoretical Formulas of the Frequency Component Contained in the Overvoltage Related to Long EHV Cables. – IEEE Transactions on Power Delivery, 2012, vol. 27, pp. 866–876, DOI:10.1109/TPWRD.2011.2179948.
18. Han L. et al. Algorithm for Fast Calculating the Energization Overvoltages along a Power Cable Based on Modal Theory and Numerical Inverse Laplace Transform. – Electric Power Systems Research, 2022, vol. 210, pp. 108–163, DOI: 10.1016/j.epsr.2022.108163.
19. Cohen A.M. Numerical Methods for Laplace Transform Inversion. New York, U.S.A: Springer Science & Business Media, 2007, 250 p.
20. Paul C.R. Analysis of Multiconductor Transmission Lines. New York, U.S.A: John Wiley & Sons, 2007, 794 p.
#
1. Gusev O.Yu., Gusev Yu.P., Posokhov N.O. Elektrotekhnika – in Russ. (Electrical Engineering), 2023, No. 4, pp. 50–55.
2. Koryavin A.R., Volkova O.V., Milkin E.A. Elektrichestvo – in Russ. (Electricity), 2013, No.7, pp. 30–36.
3. Borisov R.K. et al. Elektrichestvo – in Russ. (Electricity), 2023, No.1, pp. 36–43.
4. GOST R MEK 62067-2011. Kabeli silovye s ekstrudirovannoy izolyatsiey i armatura k nim na nominal'noe napryazhenie svyshe 150 kV (Um = 170 kV) do 500 kV (Um = 550 kV). Metody ispytaniy i trebovaniya k nim (Power Cables with Extruded Insulation and Their Accessories for Rated Voltages above 150 kV (Um = 170 kV) up to 500 kV (Um = 550 kV). Test Methods and Requirements). M.: Standartinform, 2017, 31 p.
5. Filipovic-Grcic B. et al. Specific Aspects of Overvoltage Protection in Hydro Power Plant Considering AIS and GIS Connection to the Transmission Network. – Electric Power Systems Research, 2023, vol. 218, DOI: 10.1016/j.epsr.2023.109252.
6. Jiang N. et al. An Investigation of Electromagnetic Transient Characteristics on a Practical 500 kV Submarine Cable System. – Electric Power Systems Research, 2023, vol. 223, DOI: 10.1016/j.epsr.2023.109615.
7. Kostenko M.V., Shkarin Yu.P. Volnovye protsessy i elektricheskie pomekhi v mnogoprovodnykh liniyakh vysokogo napryazheniya (Wave Processes and Electrical Interference in High-Voltage Multi-Wire Lines). М.: Energiya, 1973, 272 p.
8. Dommel H.W. EMTP Theory Book. Canada: Microtran Power System Analysis Corporation, 1996, 483 c.
9. Dommel H.W. Digital Computer Solution of Electromagnetic Transients in Single-and Multiphase Networks. – IEEE Transactions on Power Apparatus and Systems, 1969, vol. PAS-88, No. 4, pp. 388–399, DOI:10.1109/TPAS.1969.292459.
10. Marti L. Simulation of Transients in Underground Cables with Frequency-Dependent Modal Transformation Matrices. – IEEE Transactions on Power Delivery, 1988, vol. 3, No. 3, pp. 1099–1110, DOI:10.1109/61.193892.
11. Martinez M.C. Accurate and Efficient Simulation of Electro-magnetic Transients Using Frequency Dependant Line and Cable Models: Ph. D. diss. Montreal, Canada, 2019, 126 p.
12. Morched A., Gustavsen B., Tartibi M. A Universal Model for Accurate Calculation of Electromagnetic Transients on Overhead Lines and Underground Cables. – IEEE Transactions on Power Delivery, 1999, vol. 14, No. 3, pp. 1032–1038, DOI:10.1109/61.772350.
13. Kocar I., Mahseredjian J., Olivier G. Improvement of Numerically Stability for the Computation of Transients in Lines and Cables. – IEEE Transactions on Power Delivery, 2010, vol. 25, No. 2, pp. 1104–1111, DOI:10.1109/TPWRD.2009.2037633.
14. Ghnimi S., Rajhi A., Gharsallah A. Optimal Algorithm for the Numerical Inversion Laplace Transforms Method in a Multiconductor Transmission Line System. – International Multi-Conference on Systems, Signals and Devices, 2008, DOI:10.1109/SSD.2008.4632803.
15. Ametani A., Ohno T., Nagaoka N. Cable System Transients: Theory, Modeling and Simulation. Singapore: John Wiley & Sons, 2015, 395 p.
16. Kostenko M.V. et al. Perenapryazheniya i zashchita ot nih v vozdushnyh i kabel'nyh elektroperedachah vysokogo napryazheniya (Overvoltage and Protection against Them in High-Voltage Overhead and Cable Power Lines). L.: Nauka, 1988, 302 p.
17. Ohno T. et al. Derivation of Theoretical Formulas of the Frequency Component Contained in the Overvoltage Related to Long EHV Cables. – IEEE Transactions on Power Delivery, 2012, vol. 27, pp. 866–876, DOI:10.1109/TPWRD.2011.2179948.
18. Han L. et al. Algorithm for Fast Calculating the Energization Overvoltages along a Power Cable Based on Modal Theory and Numerical Inverse Laplace Transform. – Electric Power Systems Research, 2022, vol. 210, pp. 108–163, DOI: 10.1016/j.epsr.2022.108163.
19. Cohen A.M. Numerical Methods for Laplace Transform Inversion. New York, U.S.A: Springer Science & Business Media, 2007, 250 p.
20. Paul C.R. Analysis of Multiconductor Transmission Lines. New York, U.S.A: John Wiley & Sons, 2007, 794 p
Published
2024-04-25
Section
Article