An Intelligent Power Complex with an Active-adaptive Electric Network for Aircraft with a Distributed Power Plant

  • Dmitriy M. SHISHOV
  • Mihail T. AHUNOV
  • Nikolay S. IVANOV
  • Daniil A. SHEVTSOV
  • Igor' V. LIHACHEV
  • Aleksandr S. GLUSHCHENKO
Keywords: power supply system, intelligent electric power complex, distributed power plant, on-board radioelectronic equipment

Abstract

The development of electric power complexes plays an important role in aviation. Modern technologies are developing toward increasing the fuel heat rate and achieving enhanced robustness to accidents. These trends can be seen in all aircraft systems. This also applies to aircraft power plants and power supply systems. Moreover, the integration of these systems is enhanced as a shift is made to electric and hybrid power plants, including distributed ones. All these measures help make aviation equipment more economically efficient, safe and environmentally friendly, which contributes to further development of the industry. The article discusses the structural diagrams of an intelligent electric power complex based on the use of three-stage and magnetoelectric generators. Models of the main elements of the complex are given: a three-stage generator, which includes three electric machines and an exciter voltage regulator, and DC and AC protection and switching devices. The models presented can subsequently be used to build a general model of the electric power complex and study its design and off-design operating modes, which will help identify potential problems and shortcomings that can be eliminated at the design and development stage.

Author Biographies

Dmitriy M. SHISHOV

(Moscow Aviation Institute (National Research University), Moscow, Russia) – Docent of the Electric Power, Electromechanical and Biotechnical Systems Dept., Cand. Sci. (Eng.).

Mihail T. AHUNOV

(Moscow Aviation Institute (National Research University), Moscow, Russia) – Engineer of the Electric Power, Electromechanical and Biotechnical Systems Dept.

Nikolay S. IVANOV

(Moscow Aviation Institute (National Research University), Moscow, Russia) – Head of the Laboratory "Hybrid Electric Power Plants" of the Advanced Engineering School, Cand. Sci. (Eng.).

Daniil A. SHEVTSOV

(Moscow Aviation Institute (National Research University), Moscow, Russia) – Professor  of the Electric Power, Electromechanical and Biotechnical Systems Dept., Dr. Sci. (Eng.).

Igor' V. LIHACHEV

(Federal Autonomous Institution "State Research Institute of Aviation Systems", Moscow, Russia.) – Head of the On-Board Systems and Assemblies of Aircraft Lab., Cand. Sci. (Eng.).

Aleksandr S. GLUSHCHENKO

(Federal Autonomous Institution "State Research Institute of Aviation Systems", Moscow, Russia) – Engineer of the On-Board Systems and Assemblies of Aircraft Lab.

References

1. Steiner H.-J. et al. Optimum Number of Engines for Transport Aircraft Employing Electrically Powered Distributed Propulsion. – CEAS Aeronaut Journal, 2014, 5(2), pp. 157–170, DOI: 10.1007/s13272-013-0096-6.
2. Lei T. et al. The Architecture Optimization and Energy Management Technology of Aircraft Power Systems: A Review and Future Trends. – Energies, 2022, 15 (11), DOI: 10.3390/en15114109.
3. Wu J. et al. Conceptual Design and Optimization of Distributed Electric Propulsion General Aviation Aircraft. – Aerospace, 2023, 10 (5), DOI: 10.3390/aerospace10050387.
4. Buticchi G. et al. On-Board Microgrids for the More Electric Aircraft – Technology Review. – IEEE Transactions on Industrial Electronics, 2019, vol. 66, No. 7, pp. 5588–5599, DOI: 10.1109/TIE.2018.2881951.
5. Варюхин А.Н. и др. Формирование облика гибридной силовой установки для регионального самолета на жидком водороде. – Авиационная техника, 2022, № 3, с. 103–112.
6. Salem K.A., Palaia G., Quarta A.A. Review of Hybrid-Electric Aircraft Technologies and Designs: Critical Analysis and Novel Solutions. – Progress in Aerospace Sciences, 2023, vol. 141, DOI: 10.1016/j.paerosci.2023.100924.
7. Халютин С.П. Перспективные интеллектуальные системы электроснабжения летательных аппаратов. – Электропитание, 2015, № 3, с. 13–17.
8. Synodinos A., Self R., Torija A. Preliminary Noise Assessment of Aircraft with Distributed Electric Propulsion. – AIAA/CEAS Aeroacoustics Conference, 2018, DOI 10.2514/6.2018-2817.
9. Бутырин П.А., Халютин С.П. Производство систем электропитания для автономных электротранспортных средств России. – Электричество, 2023, № 2, с. 12–26.
10. Мусин С.М. и др. Энергосистема гибридных самолетов авиации общего назначения. – Авиационная промышленность, 2017, № 1, с. 17–22.
11. Шевцов Д.А., Шишов Д.М., Алексеев А.О. Трехфазное выпрямительное устройство с функцией коррекции коэффициента мощности и стабилизацией выходного двуполярного напряжения. – Практическая силовая электроника, 2023, № 2 (90), с. 7–12.
12. Liang S. et al. Overview and Analysis of Electric Power Systems for More/All Electric Aircraft. – IECON 2023 – 49th Annual Conference of the IEEE Industrial Electronics Society, 2023, DOI: 10.1109/IECON51785.2023.10312392.
13. Wang J. et al. Research on Voltage Regulation Technology of Aircraft 270 V Brushless DC Power Generation System Based on H-Infinity Robust Control. – 8th Asia Conference on Power and Electrical Engineering (ACPEE), 2023, pp. 2413–2418, DOI: 10.1109/ACPEE56931.2023.10135937.
14. Халютин С.П. и др. Цифровые двойники в теории и практике авиационной электроэнергетики. –Электричество, 2022, № 10, с. 4–13.
15. Чекин А.Ю. Применение цифровых двойников в системах предиктивной диагностики технического состояния воздушных судов. – МКПУ-2023, 2023, т. 3, с. 83–85.
#
1. Steiner H.-J. et al. Optimum Number of Engines for Transport Aircraft Employing Electrically Powered Distributed Propulsion. – CEAS Aeronaut Journal, 2014, 5(2), pp. 157–170, DOI: 10.1007/s13272-013-0096-6.
2. Lei T. et al. The Architecture Optimization and Energy Management Technology of Aircraft Power Systems: A Review and Future Trends. – Energies, 2022, 15 (11), DOI: 10.3390/en15114109.
3. Wu J. et al. Conceptual Design and Optimization of Distributed Electric Propulsion General Aviation Aircraft. – Aerospace, 2023, 10 (5), DOI: 10.3390/aerospace10050387.
4. Buticchi G. et al. On-Board Microgrids for the More Electric Aircraft – Technology Review. – IEEE Transactions on Industrial Electronics, 2019, vol. 66, No. 7, pp. 5588–5599, DOI: 10.1109/TIE. 2018.2881951.
5. Varyuhin A.N. et al. Aviatsionnaya tekhnika – in Russ. (Aviation Equipment), 2022, No. 3, pp. 103–112.
6. Salem K.A., Palaia G., Quarta A.A. Review of Hybrid-Electric Aircraft Technologies and Designs: Critical Analysis and Novel Solutions.– Progress in Aerospace Sciences, 2023, vol. 141, DOI: 10.1016/j.paerosci.2023.100924.
7. Halyutin S.P. Elektropitanie – in Russ. (Power Supply), 2015, No. 3, pp. 13–17.
8. Synodinos A., Self R., Torija A. Preliminary Noise Assessment of Aircraft with Distributed Electric Propulsion. – AIAA/CEAS Aeroacoustics Conference, 2018, DOI 10.2514/6.2018-2817.
9. Butyrin P.A., Halyutin S.P. Elektrichestvo – in Russ. (Electricity), 2023, No. 2, pp. 12–26.
10. Musin S.М. et al. Aviatsionnaya promyshlennost' – in Russ. (Aviation Industry), 2017, No. 1, pp. 17–22.
11. Shevtsov D.A., Shishov D.M., Alekseev А.О. Prakticheskaya silovaya elektronika – in Russ. (Practical Power Electronics), 2023, No. 2 (90), pp. 7–12.
12. Liang S. et al. Overview and Analysis of Electric Power Systems for More/All Electric Aircraft. – IECON 2023 – 49th Annual Conference of the IEEE Industrial Electronics Society, 2023, DOI: 10.1109/IECON51785.2023.10312392.
13. Wang J. et al. Research on Voltage Regulation Technology of Aircraft 270 V Brushless DC Power Generation System Based on H-Infinity Robust Control. – 8th Asia Conference on Power and Electrical Engineering (ACPEE), 2023, pp. 2413–2418, DOI: 10.1109/ACPEE56931.2023.10135937.
14. Halyutin S.P. et al. Elektrichestvo – in Russ. (Electricity), 2022, No. 10, pp. 4–13.
15. Chekin А.Yu. MKPU-2023 – in Russ. (MCPU-2023), 2023, vol. 3, pp. 83–85
Published
2024-05-30
Section
Article