Modernizing the Algorithm of a Virtual Synchronous Generator for Controlling the Energy Storage System in a Microgrid
Abstract
Frequency control is one of the most important problems for electric power systems and is regulated by various national standards and codes. In view of the ongoing introduction of inertialess generating units based on power converters (that are mainly renewable energy sources (RES)) into modern power systems, this problem becomes more complex in nature and involves the need to take into account additional factors related to stochastic power generation by RES, reduction of the overall inertia in the power system, etc. This feature manifests itself most acutely in microgrids, which are characterized by significant frequency variations. An effective way to solve such a problem is the use of energy storage systems (ESS) connected to a grid-forming inverter. The article presents a modernized structure of the control algorithm based on a virtual synchronous generator controlled by a current reference signal (CC-VSG), oscillations in which are damped using a feed-forward control. A PI controller is also incorporated into the modernized СС-VSG structure to monitor the ESS charging level. By using an analysis in the frequency domain for a linearized model that reflects the active power and frequency variation processes in the microgrid, it is shown that the loops producing the inertial response, frequency control, and ESS charge recovery, implemented in the developed СС-VSG algorithm, operate independently from each other. It is also shown that with a VSG constructed in accordance with the conventional structure, a need arises to find a tradeoff between the frequency control quality and charge recovery, which inevitably entails the need to increase the ESS nominal energy capacity. For tuning the modernized CC-VSG algorithm, a procedure has been developed, which is based on separation of the bandwidths of different loops. By using this procedure, the desired frequency control quality in the microgrid is achieved at the minimum possible size of the ESS with taking into account of charge level recovery and permissible frequency variation limits. To confirm the obtained results, mathematical simulation in the time domain has been performed in the PSCAD/EMTDC environment.
References
2. Елистратов В.В. и др. Арктическая ветродизельная электростанция с интеллектуальной системой автоматического управления. – Электричество, 2022, № 2, с. 29–37.
3. Ilyushin P.V., Pazderin A.V. Requirements for Power Stations Islanding Automation. – International Conference on Industrial Engineering, Applications and Manufacturing, 2018, DOI: 10.1109/ICIEAM.2018.8728682.
4. Uriarte F.M. et al. Microgrid Ramp Rates and the Inertial Stability Margin. – IEEE Transactions on Power Systems, 2015, vol. 30, No. 6, pp. 3209–3216, DOI: 10.1109/TPWRS.2014.2387700.
5. Muyeen S.M., Islam S.M., Blaabjerg F. Variability, Scalability and Stability of Microgrids. Institution of Engineering and Technology, 2019, 623 p., DOI: 10.1049/PBPO139E.
6. Kerdphol T. et al. Enhanced Virtual Inertia Control Based on Derivative Technique to Emulate Simultaneous Inertia and Damping Properties for Microgrid Frequency Regulation. – IEEE Access, 2019, vol. 9, pp. 14422–14433, DOI: 10.1109/ACCESS.2019.2892747.
7. Ilyushin P.V., Pazderin A.V. Approaches to Organization of Emergency Control at Isolated Operation of Energy Areas with Distributed Generation. – The International Ural Conference on Green Energy, 2018, pp. 149–155, DOI: 10.1109/URALCON.2018.8544361.
8. Илюшин П.В., Куликов А.Л., Березовский П.К. Эффективное использование накопителей электрической энергии для предотвращения отключений объектов распределенной генерации при кратковременных отклонениях частоты. – Релейная защита и автоматизация, 2019, № 4(37), с. 26–33.
9. Бачурин П.А. и др. Испытания промышленного образца системы накопления энергии СНЭ-10-1200-400 при совместной работе с ГПУ в составе экспериментальной энергосистемы. – Электро-энергия. Передача и распределение, 2020, № 2(59), с. 18–24.
10. Tamrakar U. et al. Virtual Inertia: Current Trends and Future Directions. – Applied Science, 2017, vol. 7, 654, DOI: 10.3390/app70 70654.
11. Cheng Y. et al. Smart Frequency Control in Low Inertia Energy Systems Based on Frequency Response Techniques: A Review. – Applied Energy, 2020, vol. 279, 115798, DOI:10.1016/j.apenergy.2020.115798.
12. Meng L. et al. Fast Frequency Response from Energy Storage Systems – A Review of Grid Standards, Projects and Technical Issues. – IEEE Transactions on Smart Grid, 2020, vol. 11, No.2, pp. 1566–1581, DOI:10.1109/TSG.2019.2940173.
13. Ruban N. et al. Frequency Control by the PV Station in Electric Power Systems with Hydrogen Energy Storage. – International Journal of Hydrogen Energy, 2023, vol. 48, No. 73, pp. 28262–28276, DOI:10.1016/j.ijhydene.2023.04.048.
14. Rosso R. et al. Grid-Forming Converters: Control Approaches, Grid-Synchronization, and Future Trends—A Review. – IEEE Open Journal of Industry Applications, 2021, vol. 2, pp. 93–109, DOI:10.1109/OJIA.2021.3074028.
15. Kikusato H. et al. Verification of Power Hardware-in-the-Loop Environment for Testing Grid-Forming Inverter. – Energy Reports, 2023, vol. 9, pp. 303–311, DOI:10.1016/j.egyr.2022.12.126.
16. Суворов А.А. и др. Синтез и тестирование типовых структур систем автоматического управления на основе виртуального синхронного генератора для генерирующих установок с силовым преобразователем. – Электрические станции, 2022, № 3 (1088), с. 43–57.
17. Mallemaci V. et al. A Comprehensive Comparison of Virtual Synchronous Generators with Focus on Virtual Inertia and Frequency Regulation. – Electric Power Systems Research, 2021, vol. 201, 107516, DOI:10.1016/j.epsr.2021.107516.
18. Soni N., Doolla S., Chandorkar M.C. Inertia Design Methods for Islanded Microgrids Having Static and Rotating Energy Sources. – IEEE Transactions on Industry Applications, 2016, vol. 52, No. 6, pp. 5165–5174, DOI:10.1109/TIA.2016.2597281.
19. Yuan C. et al. Constrained Operation Zone of a VSG Con-sidering the DC-Side Power Margin. – Journal of Engineering, 2019, vol. 2019, No. 16, pp. 2563–2568, DOI:10.1049/joe.2018.8679.
20. Yuan C. et al. Transient Characteristics and Physical Constraints of Grid-Tied Virtual Synchronous Machines. – Journal of Power Electronics, 2018, vol. 18, No. 4, pp. 1111–1126, DOI:10.6113/JPE.2018.18.4.1111.
21. Илюшин П.В., Шавловский С.В. Использование сегментированной статической характеристики по частоте для поддержания уровня заряда системы накопления электроэнергии. – Электроэнергия. Передача и распределение, 2021, № 5 (68), с. 44–53.
22. Molina M.G., Mercado P.E. Primary Frequency Control of Multi-Machine Power Systems with STATCOM-SMES: A Case Study. – International Journal of Electrical Power & Energy Systems, 2013, vol. 44, No. 1, pp. 388–402, DOI:10.1016/j.ijepes.2011.10.035.
23. Ma Y. et al. Virtual Synchronous Generator Control of Full Converter Wind Turbines with Short-Term Energy Storage. – IEEE Transactions on Industrial Electronics, 2017, vol. 64, No. 11, pp. 8821–8831, DOI:10.1109/TIE.2017.2694347.
24. Shi M. et al. A Virtual Synchronous Generator System Control Method with Battery SOC Feedback. – 2nd IEEE Conference on Energy Internet and Energy System Integration, 2018, 8582563, DOI:10.1109/EI2.2018.8582563.
25. Guan M. Scheduled Power Control and Autonomous Energy Control of Grid-Connected Energy Storage System (ESS) with Virtual Synchronous Generator and Primary Frequency Regulation Capabilities. – IEEE Transactions on Power Systems, 2022, vol. 37, No. 2, pp. 942–954, DOI:10.1109/TPWRS.2021.3105940.
26. Hu C. et al. An SOC Based Control Strategy for VSG Using Weight Coefficient in Grid Connected Mode. – 8th International Power Electronics and Motion Control Conference, 2016, pp. 1743–1746, DOI:10.1109/IPEMC.2016.7512557.
27. Shim J.W. et al. Decentralized Operation of Multiple Energy Storage Systems: SOC Management for Frequency Regulation. – IEEE International Conference on Power System Technology, 2016, 7754038, DOI:10.1109/POWERCON.2016.7754038.
28. Суворов А.А. и др. Система автоматического управления силовым преобразователем на основе свободно конфигурируемой структуры виртуального синхронного генератора. – Электричество, 2022, № 4, с. 15–26.
29. Суворов А.А. и др. Управление сетевым инвертором на основе виртуального синхронного генератора при изменении плотности электрической сети. – Электричество, 2023, № 3, с. 35–51.
30. Suvorov A. et al. An Adaptive Inertia and Damping Control Strategy Based on Enhanced Virtual Synchronous Generator Model. – Mathematics, 2023, vol. 11, No. 18, 3938, DOI:10.3390/math11183938.
31. Аскаров А.Б. и др. Улучшение демпфирующих свойств виртуального синхронного генератора с помощью корректирующего согласно-параллельного регулятора. – Электричество, 2024, № 1, с. 18–36.
32. Chen M. et al. Characteristics of Parallel Inverters Applying Virtual Synchronous Generator Control. – IEEE Transactions on Smart Grid, 2021, vol. 12, No. 6, pp. 4690–4701, DOI:10.1109/TSG.2021.3102994.
33. Kundur P. Power System Stability and Control. McGraw-Hill, 1993, 1199 p.
34. Shim J.W. et al. Harmonious integration of faster-acting energy storage systems into frequency control reserves in power grid with high renewable generation. – IEEE Transactions on Power Systems, 2018, vol. 33, No. 6, pp. 6193–6205, DOI:10.1109/TPWRS.2018.2836157.
35. Dorf R., Bishop R.H. Modern Control Systems. Pearson, 2008, 753 p.
36. Разживин И.А. и др. Обзор математических моделей систем накопления энергии для моделирования электроэнергетических систем. Ч. I. – Известия РАН. Энергетика, 2023, № 2, с. 58–80.
37. Разживин И.А. и др. Обзор математических моделей систем накопления энергии для моделирования электроэнергетических систем. Ч. II. – Известия РАН. Энергетика, 2023, № 3, с. 34–56.
38. Sun C. et al. Design and Real-Time Implementation of a Centralized Microgrid Control System with Rule-Based Dispatch and Seamless Transition Function. – IEEE Transactions on Industry Applications, 2020, vol. 56, No. 3, pp. 3168–3177, DOI:10.1109/TIA.2020.2979790.
---
Исследование выполнено за счет гранта Российского научного фонда № 24-29-00004
#
1. Karamov D.N. et al. Energetik – in Russ. (Energetik), 2022, No. 9, pp. 39–49.
2. Elistratov V.V. et al. Elektrichestvo – in Russ. (Electricity), 2022, No. 2, pp. 29–37.
3. Ilyushin P.V., Pazderin A.V. Requirements for Power Stations Islanding Automation. – International Conference on Industrial Engineering, Applications and Manufacturing, 2018, DOI: 10.1109/ICIEAM.2018.8728682.
4. Uriarte F.M. et al. Microgrid Ramp Rates and the Inertial Stability Margin. – IEEE Transactions on Power Systems, 2015, vol. 30, No. 6, pp. 3209–3216, DOI: 10.1109/TPWRS.2014.2387700.
5. Muyeen S.M., Islam S.M., Blaabjerg F. Variability, Scalability and Stability of Microgrids. Institution of Engineering and Technology, 2019, 623 p., DOI: 10.1049/PBPO139E.
6. Kerdphol T. et al. Enhanced Virtual Inertia Control Based on Derivative Technique to Emulate Simultaneous Inertia and Damping Properties for Microgrid Frequency Regulation. – IEEE Access, 2019, vol. 9, pp. 14422–14433, DOI: 10.1109/ACCESS.2019.2892747.
7. Ilyushin P.V., Pazderin A.V. Approaches to Organization of Emergency Control at Isolated Operation of Energy Areas with Distributed Generation. – The International Ural Conference on Green Energy, 2018, pp. 149–155, DOI: 10.1109/URALCON.2018.8544361.
8. Ilyushin P.V., Kulikov A.L., Berezovskiy P.K. Releynaya zashchita i avtomatizatsiya – in Russ. (Relay Protection and Automation), 2019, No. 4 (37), pp. 26–33.
9. Bachurin P.A. et al. Elektroenergiya. Peredacha i raspredelenie – in Russ. (Electric Power. Transmission and Distribution), 2020, No. 2 (59), pp. 18–24.
10. Tamrakar U. et al. Virtual Inertia: Current Trends and Future Directions. – Applied Science, 2017, vol. 7, 654, DOI: 10.3390/app7070654.
11. Cheng Y. et al. Smart Frequency Control in Low Inertia Energy Systems Based on Frequency Response Techniques: A Review. – Applied Energy, 2020, vol. 279, 115798, DOI:10.1016/j.apenergy.2020.115798.
12. Meng L. et al. Fast Frequency Response from Energy Storage Systems – A Review of Grid Standards, Projects and Technical Issues. – IEEE Transactions on Smart Grid, 2020, vol. 11, No.2, pp. 1566–1581, DOI:10.1109/TSG.2019.2940173.
13. Ruban N. et al. Frequency Control by the PV Station in Electric Power Systems with Hydrogen Energy Storage. – International Journal of Hydrogen Energy, 2023, vol. 48, No. 73, pp. 28262–28276, DOI:10.1016/j.ijhydene.2023.04.048.
14. Rosso R. et al. Grid-Forming Converters: Control Approaches, Grid-Synchronization, and Future Trends — A Review. – IEEE Open Journal of Industry Applications, 2021, vol. 2, pp. 93–109, DOI:10.1109/OJIA.2021.3074028.
15. Kikusato H. et al. Verification of Power Hardware-in-the-Loop Environment for Testing Grid-Forming Inverter. – Energy Reports, 2023, vol. 9, pp. 303–311, DOI:10.1016/j.egyr.2022.12.126.
16. Suvorov A.A. et al. Elektricheskie stantsii – in Russ. (Electrical Power Plants), 2022, No. 3(1088), pp. 43–57.
17. Mallemaci V. et al. A Comprehensive Comparison of Virtual Synchronous Generators with Focus on Virtual Inertia and Frequency Regulation. – Electric Power Systems Research, 2021, vol. 201, 107516, DOI:10.1016/j.epsr.2021.107516.
18. Soni N., Doolla S., Chandorkar M.C. Inertia Design Methods for Islanded Microgrids Having Static and Rotating Energy Sources. – IEEE Transactions on Industry Applications, 2016, vol. 52, No. 6, pp. 5165–5174, DOI:10.1109/TIA.2016.2597281.
19. Yuan C. et al. Constrained Operation Zone of a VSG Considering the DC-Side Power Margin. – Journal of Engineering, 2019, vol. 2019, No. 16, pp. 2563–2568, DOI:10.1049/joe.2018.8679.
20. Yuan C. et al. Transient Characteristics and Physical Constraints of Grid-Tied Virtual Synchronous Machines. – Journal of Power Electronics, 2018, vol. 18, No. 4, pp. 1111–1126, DOI:10.6113/JPE.2018.18.4.1111.
21. Ilyushin P.V., Shavlovskiy S.V. Elektroenergiya. Peredacha i raspredelenie – in Russ. (Electric Power. Transmission and Distribution), 2021, No. 5 (68), pp. 44–53.
22. Molina M.G., Mercado P.E. Primary Frequency Control of Multi-Machine Power Systems with STATCOM-SMES: A Case Study. – International Journal of Electrical Power & Energy Systems, 2013, vol. 44, No. 1, pp. 388–402, DOI:10.1016/j.ijepes.2011.10.035.
23. Ma Y. et al. Virtual Synchronous Generator Control of Full Converter Wind Turbines with Short-Term Energy Storage. – IEEE Transactions on Industrial Electronics, 2017, vol. 64, No. 11, pp. 8821–8831, DOI:10.1109/TIE.2017.2694347.
24. Shi M. et al. A Virtual Synchronous Generator System Control Method with Battery SOC Feedback. – 2nd IEEE Conference on Energy Internet and Energy System Integration, 2018, 8582563, DOI:10.1109/EI2.2018.8582563.
25. Guan M. Scheduled Power Control and Autonomous Energy Control of Grid-Connected Energy Storage System (ESS) with Virtual Synchronous Generator and Primary Frequency Regulation Capabilities. – IEEE Transactions on Power Systems, 2022, vol. 37, No. 2, pp. 942–954, DOI:10.1109/TPWRS.2021.3105940.
26. Hu C. et al. An SOC Based Control Strategy for VSG Using Weight Coefficient in Grid Connected Mode. – 8th International Power Electronics and Motion Control Conference, 2016, pp. 1743–1746, DOI:10.1109/IPEMC.2016.7512557.
27. Shim J.W. et al. Decentralized Operation of Multiple Energy Storage Systems: SOC Management for Frequency Regulation. – IEEE International Conference on Power System Technology, 2016, 7754038, DOI:10.1109/POWERCON.2016.7754038.
28. Suvorov A.A. et al. Elektrichestvo – in Russ. (Electricity), 2022, No. 4, pp. 15–26.
29. Suvorov A.A. et al. Elektrichestvo – in Russ. (Electricity), 2023, No. 3, pp. 35–51.
30. Suvorov A. et al. An Adaptive Inertia and Damping Control Strategy Based on Enhanced Virtual Synchronous Generator Model. – Mathematics, 2023, vol. 11, No. 18, 3938, DOI:10.3390/math11183938.
31. Askarov A.B. et al. Elektrichestvo – in Russ. (Electricity), 2024, No. 1, pp. 18–36.
32. Chen M. et al. Characteristics of Parallel Inverters Applying Virtual Synchronous Generator Control. – IEEE Transactions on Smart Grid, 2021, vol. 12, No. 6, pp. 4690–4701, DOI:10.1109/TSG.2021.3102994.
33. Kundur P. Power System Stability and Control. McGraw-Hill, 1993, 1199 p.
34. Shim J.W. et al. Harmonious integration of faster-acting energy storage systems into frequency control reserves in power grid with high renewable generation. – IEEE Transactions on Power Systems, 2018, vol. 33, No. 6, pp. 6193–6205, DOI:10.1109/TPWRS.2018.2836157.
35. Dorf R., Bishop R.H. Modern Control Systems. Pearson, 2008, 753 p.
36. Razzhivin I.A. et al. Izvestiya RAN. Energetika – in Russ. (News of the Russian Academy of Sciences. Energy Industry), 2023, No. 2, pp. 58–80.
37. Razzhivin I.A. et al. Izvestiya RAN. Energetika – in Russ. (News of the Russian Academy of Sciences. Energy Industry), 2023, No. 3, pp. 34–56.
38. Sun C. et al. Design and Real-Time Implementation of a Centralized Microgrid Control System with Rule-Based Dispatch and Seamless Transition Function. – IEEE Transactions on Industry Applications, 2020, vol. 56, No. 3, pp. 3168–3177, DOI:10.1109/TIA.2020.2979790
---
The study was financially supported by the Russian Science Foundation, grant no. 24-29-00004