A Mathematical Model of the Power System for Analyzing the Algorithms for Automatic Speed Controllers of Generators

  • Gleb V. GLAZYRIN
  • Viktoriya A. FYODOROVA
  • Viktor F. KIRICHENKO
  • Pavel V. MATRENIN
Keywords: frequency, electric power system, controllers, control algorithm, generators, frequency fluctuations, transients

Abstract

Control of the generator operating parameters, in particular, its frequency, is among the key processes in the operational dispatch control of electric power systems. The article considers the process of general primary frequency control (GPFC), which aims to reduce the deviation of this parameter from the reference value. One problem associated with the GPFC is as follows: if several power plants participate in the frequency control in the power system with different types of controllers, but without proper coordination of their operation, incorrect control accompanied by undamped frequency fluctuations may occur in certain emergency situations. An attempt to use standardized settings of the controllers does not yield the desired quality of control in all operational situations, as a result of which the power plant operators have nothing to do but ignore the requirements of regulatory documents. In view of this, a need arises to develop a mathematical model of the power system with the possibility of changing the types of controllers at the modelled power stations and correcting their parameters by means of software. The article addresses matters concerned with the development of a mathematical model that would make it possible to study in a detailed manner the specific features pertinent to general primary frequency control and the transients triggered by it. The developed model has been verified against the data of a real accident that occurred in the power system operated by the Norilsk-Taimyr power company.

Author Biographies

Gleb V. GLAZYRIN

(Novosibirsk State Technical University, Novosibirsk, Russia) – Docent of the Electric Power Plants Dept., Cand. Sci. (Eng.).

Viktoriya A. FYODOROVA

(Novosibirsk State Technical University, SibNIIE, branch of NTC Rosseti FGC UES, Novosibirsk, Russia) – Postgraduate Student of the Electric Power Plants Dept., First-Class Engineer of the RPA and Automatic Control Systems Dept.

Viktor F. KIRICHENKO

(Novosibirsk State Technical University, Novosibirsk, Russia) – Postgraduate Student of the Electric Power Plants Dept.

Pavel V. MATRENIN

(Novosibirsk State Technical University, Novosibirsk; Ural Federal University Named After the First President of Russia B.N.Yeltsin, Ekaterinburg, Russia) – Docent of the Enterprise Power Supply Systems Dept.; Leading Researcher, Cand. Sci. (Eng.).

References

1. Барзам А.Б. Системная автоматика. М.: Энергоатомиздат, 1989, 446 с.
2. Овчаренко Н.И. Автоматика энергосистем / под ред. А.Ф. Дьякова. М.: Издательский дом МЭИ, 2016, 476 с.
3. Fyodorova V., Kirichenko V., Glazyrin G. Development of a Mathematical Model for the Study of Transients in General Primary Frequency Control in Power Systems. – E3S Web of Conferences, 2023, vol. 470, DOI:10.1051/e3sconf/202347001048.
4. Fyodorova V.A. et al. The Process of Primary Frequency Control of the Power Systems Investigation Using Modeling Methods. – IEEE XVI International Scientific and Technical Conference Actual Problems of Electronic Instrument Engineering, 2023, pp. 360–365, DOI:10.1109/APEIE59731.2023.10347775.
5. Bu S., Wen J., Li F. A Generic Framework for Analytical Probabilistic Assessment of Frequency Stability in Modern Power System Operational Planning. – IEEE Transactions on Power Systems, 2019, vol. 34, No. 5, pp. 3973–3976, DOI: 10.1109/TPWRS.2019.2924149.
6. Glazyrin G. et al. Simulation of Transients in an Autonomous Power System Considering the Generator and Transformer Magnetic Core Saturation. – Energy Reports, 2023, vol. 9, supl. 1, pp. 444–451, DOI:10.1016/j.egyr.2022.11.031.
7. Аллаев К.Р. Выбор настроек ПИД-регуляторов устройства автоматического управления генерацией в энергосистеме. – Электричество, 2023, № 2, с. 50–59.
8. Герасимов А.С., Герасимов Д.А., Гуриков О.В. Исследование систем автоматического управления гидроагрегатами Серебрянских ГЭС. – Известия НТЦ Единой энергетической системы, 2023, № 1(88), с. 35–50.
9. Gulzar M.M. et al. Load Frequency Control (LFC) Strategies in Renewable Energy-Based Hybrid Power Systems: A Review. – Energies, 2022, vol. 15, No. 10, DOI: 10.3390/en15103488.
10. Аюев Б. и др. Особенности регулирования частоты и перетоков мощности в изолированно работающих энергосистемах. – Известия НТЦ Единой энергетической системы, 2020, № 1, с. 124–130.
11. Коган Ф.Л. Стабилизация режимов современной многомашинной энергосистемы после больших возмущений. – Электричество, 2023, № 5, с. 4–13.
12. Коган Ф.Л. Повышение эффективности стабилизации режима при возмущениях в энергосистеме. – Электричество, 2020, № 5, с. 4–11.
13. Yang F. et al. Data-Driven Load Frequency Control Based on Multi-Agent Reinforcement Learning With Attention Mechanism. – IEEE Transactions on Power Systems, 2023, 38(6), pp. 5560–5569, DOI: 10.1109/TPWRS.2022.3223255..
14. Liu Q. et al. Emergency Control Strategy of Ultra-Low Frequency Oscillations Based on WAMS. – IEEE Innovative Smart Grid Technologies-Asia, 2019, pp. 296–301, DOI: 10.1109/ISGT-Asia.2019.8881141.
15. Рабинович М.А. Статистические характеристики частоты электроэнергетической системы, связанной слабой связью с энергообъединением. – Электричество, 2020, № 3, с. 18–27.
16. ГОСТ 55890-2013. Единая энергетическая система и изолированно работающие энергосистемы. Оперативно-диспетчерское управление. Регулирование частоты и перетоков активной мощности. Нормы и требования. М.: Стандартинформ, 2014, 51 с.
---
Исследование, по результатам которого подготовлена статья, выполнено при финансовой поддержке Российского научного фонда (проект № 22-79-00181).
#
1. Barzam A.B. Sistemnaya avtomatika (System Automation). M.: Energoatomizdat, 1989, 446 p.
2. Ovcharenko N.I. Avtomatika energosistem (Automation of Power Systems) / Ed. by A.F. Dyakov. M.: Izdatel'skiy dom MEI, 2016, 476 p.
3. Fyodorova V., Kirichenko V., Glazyrin G. Development of a Mathematical Model for the Study of Transients in General Primary Frequency Control in Power Systems. – E3S Web of Conferences, 2023, vol. 470, DOI:10.1051/e3sconf/202347001048.
4. Fyodorova V.A. et al. The Process of Primary Frequency Control of the Power Systems Investigation Using Modeling Methods. – IEEE XVI International Scientific and Technical Conference Actual Problems of Electronic Instrument Engineering, 2023, pp. 360–365, DOI:10.1109/APEIE59731.2023.10347775.
5. Bu S., Wen J., Li F. A Generic Framework for Analytical Probabilistic Assessment of Frequency Stability in Modern Power System Operational Planning. – IEEE Transactions on Power Systems, 2019, vol. 34, No. 5, pp. 3973–3976, DOI: 10.1109/TPWRS.2019.2924149.
6. Glazyrin G. et al. Simulation of Transients in an Autonomous Power System Considering the Generator and Transformer Magnetic Core Saturation. – Energy Reports, 2023, vol. 9, supl. 1, pp. 444–451, DOI:10.1016/j.egyr.2022.11.031.
7. Аllaev К.R. Elektrichestvo – in Russ. (Electricity), 2023, No. 2, pp. 50–59.
8. Gerasimov A.S., Gerasimov D.A., Gurikov O.V. Izvestiya NTTS Edinoy energeticheskoy sistemy – in Russ. (Proceedings of the NTC of the Unified Energy System), 2023, No. 1(88), pp. 35–50.
9. Gulzar M.M. et al. Load Frequency Control (LFC) Strategies in Renewable Energy-Based Hybrid Power Systems: A Review. – Energies, 2022, vol. 15, No. 10, DOI: 10.3390/en15103488.
10. Ayuev B. et al. Izvestiya NTTS Edinoy energeticheskoy sistemy – in Russ. (Proceedings of the NTC of the Unified Energy System), 2020, No. 1, pp. 124–130.
11. Коgan F.L. Elektrichestvo – in Russ. (Electricity), 2023, No. 5, pp. 4–13.
12. Коgan F.L. Elektrichestvo – in Russ. (Electricity), 2020, No. 5, pp. 4–11.
13. Yang F. et al. Data-Driven Load Frequency Control Based on Multi-Agent Reinforcement Learning With Attention Mechanism. – IEEE Transactions on Power Systems, 2023, 38(6), pp. 5560–5569, DOI: 10.1109/TPWRS.2022.3223255.
14. Liu Q. et al. Emergency Control Strategy of Ultra-Low Frequency Oscillations Based on WAMS. – IEEE Innovative Smart Grid Technologies-Asia, 2019, pp. 296–301, DOI: 10.1109/ISGT-Asia.2019.8881141.
15. Rabinovich М.А. Elektrichestvo – in Russ. (Electricity), 2020, No. 3, pp. 18–27.
16. GОSТ 55890-2013. Edinaya energeticheskaya sistema i izolirovanno rabotayushchie energosistemy. Operativno-dispetcherskoe upravlenie. Regulirovanie chastoty i peretokov aktivnoy moshchnosti. Normy i trebovaniya (United Power System and Isolated Power Systems. Operative-Dispatch Management. Frequency Control and Control of Active Power. Norms and Requirements). M.: Standartinform, 2014, 51 p
---
The research was financially supported by a grant of the Russian Science Foundation (project No. 22-79-00181)
Published
2024-05-30
Section
Article