Hybrid Broadband Power Filters for Variable Frequency Drive Systems

  • Valeriy P. DOVGUN
  • Denis E. EGOROV
  • Nataliya P. BOYARSKAYA
  • Evgeniy V. BLINOV
Keywords: variable frequency electric drive, noncharacteristic harmonic components, interharmonics, hybrid broadband filters

Abstract

Variable frequency drive (VFD) systems account for a significant part of the nonlinear loads powered by the electric networks of modern industrial enterprises. Mass-scale use of VFD systems entails a growing level of higher harmonic components of voltage and current generated into the external grid. The level and spectrum of higher harmonic components depend on the drive operation mode. To limit the level of higher harmonic components, combined harmonic filtering and reactive power compensating (HFRPC) devices have to be used, which serve not only to attenuate harmonic distortions, but also to damp resonance operation modes able to amplify individual harmonic components. The article presents new configurations of hybrid compensating devices comprising a parallel active filter and a passive broadband filter in the form of a singly terminated reactive four-pole. Requirements for the passive filter structure and parameters are defined to ensure attenuation of a wide spectrum of harmonic components and damping of resonance phenomena in the grid. A procedure for designing hybrid HFRPC devices based on using the passive circuit synthesis theory and multi-criteria optimization methods is considered. By using the proposed procedure, wideband HFRPC devices of the 4–6th order are designed. By increasing the passive filter order, it becomes possible to decrease the capacity of the compensating device active part. The compensating characteristics of the proposed hybrid HFRPC devices were analyzed, and it has been shown from the analysis results that they decrease the distortion levels of currents and voltages in a wide band encompassing the frequencies of characteristic and non-characteristic harmonic components. The use of a small-capacity active filter as part of an HFRPC device helps efficiently damp resonance phenomena in the grid.

Author Biographies

Valeriy P. DOVGUN

(Siberian Federal University, Krasnoyarsk, Russia) – Professor of the Automation, Automated Control and Design Systems Dept., Dr. Sci. (Eng.), Professor.

Denis E. EGOROV

(Siberian Federal University, Krasnoyarsk, Russia) – Docent of the Automation, Automated Control and Design Systems Dept., Cand. Sci. (Eng.).

Nataliya P. BOYARSKAYA

Krasnoyarsk State Agricultural University, Krasnoyarsk, Russia) – Docent of the Theoretical Foundations of Electrical Engineering Dept., Cand. Sci. (Eng.), Docent.

Evgeniy V. BLINOV

(LLC Polyus Project, Krasnoyarsk, Russia) – Head of the Electrical Engineering Dept.

References

1. Жежеленко И.В. Высшие гармоники в системах электроснабжения промпредприятий. М.: Энергоатомиздат, 2010, 375 с.
2. Брыкалов С.М. и др. Ключевые направления повышения энергетической эффективности крупных промышленных предприятий. – Энергобезопасность и энергосбережение, 2020, № 5, с. 10–18.
3. Куско А., Томпсон М. Качество энергии в электрических сетях. М.: Додэка-XXI, 2008, 336 c.
4. Алферов И.В., Зырянов В.М., Митрофанов Н.А. Анализ аварийности и причин выхода из строя конденсаторных установок в системе электроснабжения нефтегазодобывающего месторождения. –Вестник Иркутского государственного технического университета, 2019, 23(1), с. 63–74.
5. Сычев Ю.А. Повышение качества электроэнергии в системах электроснабжения минерально-сырьевого комплекса гибридными фильтрокомпенсирующими устройствами. – Записки Горного института, 2021, т. 247, с. 132–140.
6. Masoum M., Mosos P., Masoum A. Impact of Adjustable Speed PWM Drives on Operation and Harmonic Losses of Nonlinear Three Phase Transformers. – International Conference on Power Electronics and Drives Systems, 2007, pp. 562–567, DOI:10.1109/PEDS.2007.4487757.
7. Dugan R.C. et al. Electrical Power Systems Quality. US: McGraw-Hill Professional, 2012.
8. Dekka A., Beig F., Poshtan M. Comparison of Passive and Active Power Filters in Oil Drilling Rigs. – 11th International Conference on Electrical Power Quality and Utilization, 2011, DOI:10.1109/EPQU.2011.6128815.
9. Dekka A. et al. Retrofitting of Harmonic Power Filters in On-shore Oil Drilling Rigs: Challenges and Solutions. – IEEE Transactions on Industry Applications, 2014, vol. 50, No. 1, pp. 142–154, DOI:10.1109/TIA.2013.2269895.
10. Farbis M., Hoevenaars A., Greenwald J. Oil Field Retrofit of ESPs to Meet Harmonic Compliance. – IEEE Transactions on Industry Applications, 2016, vol. 52, No. 1, pp. 718–728.
11. Das J. Design and Application of a Second-Order High-Pass Damped Filter for 8000-hp ID Fan Drives – A Case Study. – IEEE Transactions on Industry Applications. 2015, 51(2), pp. 1417–1426, DOI:10.1109/TIA.2014.2356655.
12. Розанов Ю.К. Силовая электроника. М.: Издательство МЭИ, 2018, 508 с.
13. Akagi H. Active Harmonic Filters. – Proceedings of the IEEE, 2005, vol. 93, No. 12, pp. 2128–2141, DOI: 10.1109/JPROC.2005.859603.
14. Rivas D. et al. Improving Passive Filter Compensation Performance with Active Techniques. – IEEE Transactions on Industrial Electronics, vol. 50, No. 1, 2003, pp. 161–169.
15. Fujita H., Yamasaki T., Akagi H. A Hybrid Active Filter for Damping of Harmonic Resonance in Industrial Power Systems. – IEEE Transactions on Power Electronics, 2000, vol. 15, No. 28, pp. 215–222, DOI:10.1109/63.838093.
16. Lee T-L., Wang Y-C., Li J-C. Design of a Hybrid Active Filter for Harmonics Suppression in Industrial Facilities. – International Conference on Power Electronics and Drives Systems, 2009, pp. 121–126, DOI:10.1109/PEDS.2009.5385811.
17. Boonseng C. et al. Design and Installation of Active Filters for Power Quality Improvement for Water Treatment Plants. – International Conference on Power Electronics and Drives Systems, 2019, DOI:10.1109/PEDS44367.2019.8998763.
18. Nassif A. Assessing the Impact of Harmonics and Interharmonics of Top and Mudpump Variable Frequency Drives in Drilling Rigs. – IEEE Transactions on Industry Applications, 2019, vol. 55, No. 6, pp. 5574–5583, DOI:10.1109/TIA.2019.2929708.
19. Carbone R. Analyzing Voltage Background Distortion Effects on PWM Adjustable-Speed Drives. – IEEE Transactions on Power Electronics, 2004, vol. 19, No. 3, pp. 765–774, DOI: 10.1109/TPEL.2004.826506.
20. Tayjasanant T., Xu W. Case Study of Flicker Interharmonic Problems Caused by a Variable Frequency Drive. – 11th International Conference on Harmonics and Quality of Power, 2004, pp. 72–76, DOI:10.1109/ICHQP.2004.1409331.
21. Li X., Xu W. A Novel Filter to Mitigate Interharmonic Problems Caused by Variable Frequency Drives. –International Conference on Power Electronics and Drives Systems, 2017, pp. 887–892, DOI: 10.1109/PEDS.2017.8289144.
22. Taufik, Matsumoto E., Anwari M. Impact of Multiple Adjustable Speed Drive System to Power System Harmonics. – 2nd IEEE International Conference on Power and Energy (PECon 08), 2008, pp. 324–328.
23. Пантелеев В.И. и др. Качество электрической энергии в системах электроснабжения горно-перерабатывающих предприятий России. – Вестник Иркутского государственного технического университета, 2021, т. 25. № 3, с. 356–368.
24. Liang X., Ilochonwu O., Lim J. Influence of Reactors on Input Harmonics of Variable Frequency Drives. – IEEE Transactions on Industry Applications, 2011, 47(5), pp. 2195–2203, DOI: 10.1109/ICPS.2011.5890883.
25. Довгун В.П. и др. Параметрический синтез широкополосных силовых фильтров. – Электричество, 2018, № 12, с. 14–21.
26. Белецкий А.Ф. Теория линейных электрических цепей. СПб.: Лань, 2009, 544 с.
27. Довгун В.П. и др. Широкополосные демпфирующие фильтры лестничной структуры – Известия высших учебных заведений. Проблемы энергетики, 2024, т. 26, № 1, с. 77–92.
28. Li X., Xu W., Ding T. Damped High Passive Filter – a New Filtering Scheme for Multipulse Rectifier Systems. – IEEE Transactions on Power Delivery, 2017, 32(1), pp. 117–124, DOI: 10.1109/TPWRD.2016.2541621.
29. Wang Y. et al. A Comprehensive Investigation on the Selection of High-Pass Harmonic Filters. – IEEE Transactions on Power Delivery, 2022, 37 (5), pp. 4212–4226, DOI:10.1109/TPWRD.2022.3147835.
#
1. Zhezhelenko I.V. Vysshie garmoniki v sistemah elektro-snabzheniya prompredpriyatiy (Higher Harmonics in Power Supply Systems of Industrial Enterprises). M.: Energoatomizdat, 2010, 375 p.
2. Brykalov S.М. et al. Energobezopasnost' i energosberezhenie – in Russ. (Energy Security and Energy Conservation), 2020, No. 5, pp. 10–18.
3. Kusko A. Tompson M. Kachestvo energii v elektricheskih setyah (Energy Quality in Electric Networks). M.: Dodeka -XXI, 2008, 336 p.
4. Alferov I.V., Zyryanov V.M., Mitrofanov N.A. Vestnik Irkutskogo gosudarstvennogo tekhnicheskogo universiteta – in Russ. (Bulletin of the Irkutsk State Technical University), 2019, 23(1), pp. 63–74.
5. Sychev Yu.А. Zapiski Gornogo instituta – in Russ. (Notes of the Mining Institute), 2021, vol. 247, pp. 132–140.
6. Masoum M., Mosos P., Masoum A. Impact of Adjustable Speed PWM Drives on Operation and Harmonic Losses of Nonlinear Three Phase Transformers. – International Conference on Power Electronics and Drives Systems, 2007, pp. 562–567, DOI:10.1109/PEDS.2007.4487757.
7. Dugan R.C. et al. Electrical Power Systems Quality. US: McGraw-Hill Professional, 2012.
8. Dekka A., Beig F., Poshtan M. Comparison of Passive and Active Power Filters in Oil Drilling Rigs. – 11th International Conference on Electrical Power Quality and Utilization, 2011, DOI:10.1109/EPQU.2011.6128815.
9. Dekka A. et al. Retrofitting of Harmonic Power Filters in Onshore Oil Drilling Rigs: Challenges and Solutions. – IEEE Transactions on Industry Applications, 2014, vol. 50, No. 1, pp. 142–154, DOI:10.1109/TIA.2013.2269895.
10. Farbis M., Hoevenaars A., Greenwald J. Oil Field Retrofit of ESPs to Meet Harmonic Compliance. – IEEE Transactions on Industry Applications, 2016, vol. 52, No. 1, pp. 718–728.
11. Das J. Design and Application of a Second-Order High-Pass Damped Filter for 8000-hp ID Fan Drives – A Case Study. – IEEE Transactions on Industry Applications. 2015, 51(2), pp. 1417–1426, DOI:10.1109/TIA.2014.2356655.
12. Rozanov Yu.K. Silovaya elektronika (Power Electronics). M.: Izdatel'stvo MEI, 2018, 508 p.
13. Akagi H. Active Harmonic Filters. – Proceedings of the IEEE, 2005, vol. 93, No. 12, pp. 2128–2141, DOI: 10.1109/JPROC.2005.859603.
14. Rivas D. et al. Improving Passive Filter Compensation Performance with Active Techniques. – IEEE Transactions on Industrial Electronics, vol. 50, No. 1, 2003, pp. 161–169.
15. Fujita H., Yamasaki T., Akagi H. A Hybrid Active Filter for Damping of Harmonic Resonance in Industrial Power Systems. – IEEE Transactions on Power Electronics, 2000, vol. 15, No. 28, pp. 215–222, DOI:10.1109/63.838093.
16. Lee T-L., Wang Y-C., Li J-C. Design of a Hybrid Active Filter for Harmonics Suppression in Industrial Facilities. – International Conference on Power Electronics and Drives Systems, 2009, pp. 121–126, DOI:10.1109/PEDS.2009.5385811.
17. Boonseng C. et al. Design and Installation of Active Filters for Power Quality Improvement for Water Treatment Plants. – International Conference on Power Electronics and Drives Systems, 2019, DOI:10.1109/PEDS44367.2019.8998763.
18. Nassif A. Assessing the Impact of Harmonics and Interhar-monics of Top and Mudpump Variable Frequency Drives in Drilling Rigs. – IEEE Transactions on Industry Applications, 2019, vol. 55, No. 6, pp. 5574–5583, DOI:10.1109/TIA.2019.2929708.
19. Carbone R. Analyzing Voltage Background Distortion Effects on PWM Adjustable-Speed Drives. – IEEE Transactions on Power Electronics, 2004, vol. 19, No. 3, pp. 765–774, DOI: 10.1109/TPEL.2004.826506.
20. Tayjasanant T., Xu W. Case Study of Flicker Interharmonic Problems Caused by a Variable Frequency Drive. – 11th International Conference on Harmonics and Quality of Power, 2004, pp. 72–76, DOI:10.1109/ICHQP.2004.1409331.
21. Li X., Xu W. A Novel Filter to Mitigate Interharmonic Problems Caused by Variable Frequency Drives. –International Conference on Power Electronics and Drives Systems, 2017, pp. 887–892, DOI: 10.1109/PEDS.2017.8289144.
22. Taufik, Matsumoto E., Anwari M. Impact of Multiple Adjustable Speed Drive System to Power System Harmonics. – 2nd IEEE International Conference on Power and Energy (PECon 08), 2008, pp. 324–328.
23. Panteleev V.I. et al. Vestnik Irkutskogo gosudarstvennogo tekhnicheskogo universiteta – in Russ. (Bulletin of the Irkutsk State Technical University), 2021, vol. 25. No. 3, pp. 356–368.
24. Liang X., Ilochonwu O., Lim J. Influence of Reactors on Input Harmonics of Variable Frequency Drives. – IEEE Transactions on Industry Applications, 2011, 47(5), pp. 2195–2203, DOI: 10.1109/ICPS.2011.5890883.
25. Dovgun V.P. et al. Elektrichestvo – in Russ. (Electricity), 2018, No. 12, pp. 14–21.
26. Beletskiy A.F. Teoriya lineynyh elektricheskih tsepey (Theory of Linear Electric Circuits). SPb.: Lan', 2009, 544 p.
27. Dovgun V.P. et al. Izvestiya vysshih uchebnyh zavedeniy. Problemy energetiki – in Russ. (News of Higher Educational Institutions. Power Industry Problems), 2024, vol. 26, No. 1, pp. 77–92.
28. Li X., Xu W., Ding T. Damped High Passive Filter – a New Filtering Scheme for Multipulse Rectifier Systems. – IEEE Transactions on Power Delivery, 2017, 32(1), pp. 117–124, DOI: 10.1109/TPWRD.2016.2541621.
29. Wang Y. et al. A Comprehensive Investigation on the Selection of High-Pass Harmonic Filters. – IEEE Transactions on Power Delivery, 2022, 37 (5), pp. 4212–4226, DOI:10.1109/TPWRD.2022.3147835
Published
2024-06-06
Section
Article