Principles of the Choice of Support Insulators under the Conditions of Their Pollution and Moistening
Abstract
To determine whether the electrical strength of polluted insulators complies with the requirements of regulatory documents in international and domestic practice, tests are carried out using two main methods: solid layer and salt fog. The first method applies to insulators designed to operate in continental regions, and the second method applies to insulators supplied to seashore regions. It is shown that when choosing insulators tested by the solid layer method, excessively increased values of the ratio of the creepage distance to the insulating height of the insulator L/H are allowed, and design solutions are obtained that a priori lead to a nonuniform distribution of voltage along insulating columns consisting of two or more elements. All these features negatively affect the insulation electrical strength and often lead to negative test results. The insulator selection principles are proposed that are based on the following main criterion: ensuring conditions for the effective use of the creepage distance by the arc discharge. For insulators designed to operate in continental regions, this criterion applies in the area of L/H ≤ (L/H)opt. It is shown that the recommendations of international regulatory documents on the upper limits of the L/H ratio are acceptable for insulators operating in seashore regions and are not acceptable for insulators operated far away from the sea. It has been found that, due to the nonuniform distribution of leakage current density, even with a uniform distribution of voltage across the column elements with different geometric parameters, it is not possible to ensure the maximum possible electrical strength of the structure.
References
2. Годулян В.В. и др. Электрическая прочность аппаратной изоляции сверхвысокого напряжения в условиях загрязнения. – Электротехника, 2004, № 2, с. 8–12.
3. ГОСТ 9920-89. Электроустановки переменного тока на напряжение от 3 до 750 кВ. Длина пути утечки внешней изоляции. М.: Стандартинформ, 2008, 6 с.
4. Корявин А.Р. Электрическая прочность внешней изоляции. М.: Изд-во МЭИ, 2018, 224 с.
5. Корявин А.Р. Проблемы выбора внешней изоляции для работы в условиях загрязнения. – Электричество, 2017, № 4, с. 22–30.
6. Корявин А.Р. Оценка эффективной длины пути утечки опорных изоляторов в условиях загрязнения и увлажнения. – Электричество, 2018, № 1, с. 22–30.
7. Gutman I.Yu. et al. Dielectric Strength of Polluted EHV Insulation. – CIGRE Session, 1988, Report 33-08.
8. CIGRE Technical Brochure. Polluted Insulators: A Review of Current Knowledge, TF 33.04.01, 2000, 186 p.
9. IEC/TS 60815-1:2008. Selection and Dimensioning of High-Voltage Insulators Intended for Use in Polluted Conditions – Part 1: Definitions, Information and General Principles, 2009, 53 p.
10. IEC/TS 60815-2:2008. Selection and Dimensioning of High-Voltage Insulators Intended for Use in Polluted Conditions – Part 2: Ceramic and Glass Insulators for A.C. Systems, 2009, 22 p.
11. IEC/TS 60815-3:2008. Selection and Dimensioning of High-Voltage Insulators Intended for Use in Polluted Conditions – Part 3: Polymer Insulators for A.C. Systems, 2009, 20 p.
12. ГОСТ Р 56736-2015. Изоляторы высокого напряжения для работы в загрязненных условиях. Выбор и определение размеров. Ч. 1. Определения, информация и общие принципы. М.: Стандартинформ, 2016, 45 c.
13. ГОСТ Р 56736-2015. Изоляторы высокого напряжения для работы в загрязненных условиях. Выбор и определение размеров. Ч. 2. Керамические и стеклянные изоляторы для систем переменного тока. М.: Стандартинформ, 2016, 23 c.
14. ГОСТ Р 56736-2015. Изоляторы высокого напряжения для работы в загрязненных условиях. Выбор и определение размеров. Ч. 3 Полимерные изоляторы для систем переменного тока. М.: Стандартинформ, 2016, 17 c.
15. Остапенко Е.И. Физические процессы при перекрытии загрязненной изоляции. – Электричество, 2006, № 9, с. 40–48.
16. Годулян В.В., Милкин Е.А., Трифонов В.З. Совершенствование методики проведения испытаний изоляторов в условиях загрязнения и увлажнения. – Электротехника, 2011, № 4, с. 29–33.
17. Мерхалев, С.Д., Соломоник Е.А. Изоляция линий и подстанций в районах с загрязненной атмосферой. Л.: Энергия, 1973, 159 с.
18. ГОСТ Р 55195. Электрооборудование и электроустановки переменного тока на напряжение от 1 до 750 кВ. Требования к электрической прочности изоляции. М.: Стандартинформ, 2014, 44 с.
#
1. GОSТ 10390-2015. Elektrooborudovanie na napryazhenie svyshe 3 kV. Metody ispytaniy vneshney izolyatsii v zagryaznennom sostoyanii (Electrical Equipment at Voltages of 3 kV and above. Test Methods of Electric Strength of External Insulation in Conditions of Contamination). М.: Standartinform, 2016, 16 p.
2. Godulyan V.V. et al. Elektrotekhnika – in Russ. (Electrical Engineering), 2004, No. 2, pp. 8–12.
3. GОSТ 9920-89. Elektroustanovki peremennogo toka na napryazhenie ot 3 do 750 kV. Dlina puti utechki vneshney izolyatsii (А.С. Electrical Installations for Voltage from 3 to 750 kV. Creepage Distance of External Insulation). M.: Standartinform, 2008, 6 p
4. Koryavin A.R. Elektricheskaya prochnost' vneshney izolyatsii (Electrical Strength of External Insulation). М.: Izd-vo MEI, 2018, 224 p.
5. Koryavin A.R. Elektrichestvo – in Russ. (Electricity), 2017, No. 4, pp. 22–30.
6. Koryavin A.R. Elektrichestvo – in Russ. (Electricity), 2018, No. 1, pp. 22–30.
7. Gutman I.Yu. et al. Dielectric Strength of Polluted EHV Insulation. – CIGRE Session, 1988, Report 33-08.
8. CIGRE Technical Brochure. Polluted Insulators: A Review of Current Knowledge, TF 33.04.01, 2000, 186 p.
9. IEC/TS 60815-1:2008. Selection and Dimensioning of High-Voltage Insulators Intended for Use in Polluted Conditions – Part 1: Definitions, Information and General Principles, 2009, 53 p.
10. IEC/TS 60815-2:2008. Selection and Dimensioning of High-Voltage Insulators Intended for Use in Polluted Conditions – Part 2: Ceramic and Glass Insulators for A.C. Systems, 2009, 22 p.
11. IEC/TS 60815-3:2008. Selection and Dimensioning of High-Voltage Insulators Intended for Use in Polluted Conditions – Part 3: Polymer Insulators for A.C. Systems, 2009, 20 p.
12. GOST R 56736-2015. Izolyatory vysokogo napryazheniya dlya raboty v zagryaznennyh usloviyah. Vybor i opredelenie razmerov. Ch. 1. Opredeleniya, informatsiya i obshchie printsipy (Selection and Dimensioning of High-Voltage Insulators Intended for Use in Polluted Conditions. Part 1. Definitions, Information and General Principles). М.: Standartinform, 2016, 45 p.
13. GOST R 56736-2015. Izolyatory vysokogo napryazheniya dlya raboty v zagryaznennyh usloviyah. Vybor i opredelenie razmerov. Ch. 2. Keramicheskie i steklyannye izolyatory dlya sistem peremennogo toka (Selection and Dimensioning of High-Voltage Insulators Intended for Use in Polluted Conditions. Part 2. Ceramic and Glass Insulators for A.C. Systems). М.: Standartinform, 2016, 23 p.
14. GOST R 56736-2015. Izolyatory vysokogo napryazheniya dlya raboty v zagryaznennyh usloviyah. Vybor i opredelenie razmerov. Ch. 3. Polimernye izolyatory dlya sistem peremennogo toka (Selection and Dimensioning of High-Voltage Insulators Intended for Use in Polluted Conditions. Part 3. Polymer insulators for A.C. Systems). М.: Standartinform, 2016, 17 p.
15. Ostapenko Е.И. Elektrichestvo – in Russ. (Electricity), 2006, No. 9, pp. 40–48.
16. Godulyan V.V., Milkin E.A., Trifonov V.Z. Elektrotekhnika – in Russ. (Electrical Engineering), 2011, No. 4, pp. 29–33.
17. Merhalev, S.D., Solomonik E.A. Izolyatsiya liniy i podstantsiy v rayonah s zagryaznennoy atmosferoy (Isolation of Lines and Substations in Areas with Polluted Atmosphere). L.: Energiya, 1973, 159 p.
18. GOST R 55195. Elektrooborudovanie i elektroustanovki peremennogo toka na napryazhenie ot 1 do 750 kV. Trebovaniya k elektricheskoy prochnosti izolyatsii (Electrical Equipment and Installations for A.C. Voltages from 1 up to 750 kV. Requirements for Dielectric Strength of Insulation). М.: Standartinform, 2014, 44 p