A Megawatt-Range Electric Converter for Advanced Hybrid Aircraft
Abstract
In the field of "green" aviation, various concepts of the electrical part of hybrid propulsion systems for aircraft are currently developed in order to achieve their maximum possible specific parameters. The article analyzes modern approaches to the development of high-capacity (over 1 MW) electric power converters as part of a hybrid aircraft propulsion system. The topologies used in high-capacity converters and electronic components available in the market are reviewed. In order to achieve maximum specific parameters, the choice is made in favor of the converter structure comprising several parallel-operating modules with a two-level topology based on silicon carbide field-effect transistor assemblies. A methodology for calculating losses in the assemblies of power transistors and determining their temperature operating conditions is proposed. The approaches to the selection of capacitor capacitance and the converter pulse-width modulation frequency were compared. The criterion for selecting the components and converter operation mode was the optimum combination of the efficiency, transistor temperature operating conditions and converter specific power. Based on the numerical analysis results, the optimum design versions have been elaborated for a 1500 kW converter consisting of three and four modules operating in parallel and fed from separate generator windings.
References
2. Варюхин А.Н. и др. Оптимизация архитектуры силовой установки гибридного летательного аппарата. – Электричество, 2021, № 8, с. 4–12.
3. Мошкунов С.И., Хомич В.Ю., Шершунова Е.А. Повышающе-понижающий преобразователь напряжения для заряда аккумуляторной батареи на борту электрического самолета. – Письма в Журнал технической физики, 2020, т. 46, № 15, с. 22–24.
4. Rendón M.A. et al. Aircraft Hybrid-Electric Propulsion: Development Trends, Challenges and Opportunities. – Journal of Control. Autom. Electr. Syst., 2021, 32(5), pp. 1244–1268, DOI:10. 1007/s40313-021-00740-x.
5. Commercial Aircraft Propulsion and Energy Systems Research: Reducing Global Carbon Emissions. Washington, DC: The National Academies Press, 2016, 122 p., DOI: 10.17226/23490.
6. Варюхин А.Н. и др. Мощный преобразователь напряжения для заряда АКБ на борту летательного аппарата с гибридной силовой установкой. – Доклады Российской академии наук. Физика, технические науки, 2022, т. 503, № 1, с. 63–68.
7. Ebersberger J. et al. Potentials and Comparison of Inverter Topologies for Future All-Electric Aircraft Propulsion. – IEEE J. Emerg. Sel. Top. Power Electron, 2022, 10 (5), pp. 5264–5279, DOI: 10.1109/JESTPE.2022.3164804.
8. Janjamraj N., Hiranvarodom S., Pirajnanchai V. Opimized Harmonic of 27-Level Inverter for Aircraft Application Using Particle Swarm Optimization. – IEEE International Conference on Power, Energy and Innovations, 2019, pp. 94–97. DOI: 10.1109/ICPEI47862.2019.8945015.
9. Wang D et al. Multilevel Inverters for Electric Aircraft Applications: Current Status and Future Trends. – IEEE Trans. Transp. Electrif, 2023, DOI:10.1109/TTE.2023.3296284.
10. Sathler H.H. Optimization of GaN-Based Series-Parallel Multilevel Three-Phase Inverter for Aircraft Applications: Dissertation. Université Paris-Saclay, 2021.
11. Li Y. et al. 500 kW Forced Air-Cooled Silicon Carbide (SiC) Three-Phase DC/AC Converter with a Power Density of 1.246 MW/m 3 and Efficiency >98.5%. – IEEE Transactions on Industry Applications, 2021, 57(5), pp. 5013–5027, DOI:10.1109/TIA.2021.3087546.
12. Modeer T. et al. Design of a GaN-Based Interleaved Nine-Level Flying Capacitor Multilevel Inverter for Electric Aircraft Applications. – IEEE Transactions on Power Electronics, 2020, 35(11), pp. 12153–12165, DOI:10.1109/TPEL.2020.2989329.
13. Wang F. et al. MW-Class Cryogenically-Cooled Inverter for Electric-Aircraft Applications. – AIAA Propulsion and Energy 2019 Forum, 2019, DOI:10.2514/6.2019-4473.
14. Варюхин А.Н. и др. Мощный импульсный преобразователь постоянного тока на карбид-кремниевых транзисторах. – Прикладная физика, 2021, № 1, с. 75–81.
15. Sunbul A. et al. A Comprehensive Steady-State Analysis for Modular Multi-Parallel Rectifiers (MMR) with Shared DC-Link. – IEEE Transactions on Industry Applications, 2023, 59(2), pp. 1969–1981, DOI:10.1109/TIA.2022.3231578.
16. Ye Z. et al. Control of Circulating Current in Two Parallel Three-Phase Boost Rectifiers. – IEEE Transactions on Power Electronics, 2002, 17(5), pp. 609–615, DOI:10.1109/TPEL.2002.802170.
17. Graovac D., Purschel M., Kiep A. MOSFET Power Losses Calculation Using the Data-Sheet Parameters. –Application Note, 2006, 1.1.
18. Stark R. et al. Estimation of Switching Losses Using Simplified Compact Models for SiC Power MOSFETs. – IEEE Design Methodologies Conference, 2021, DOI: 10.1109/DMC51747.2021.9529934.
19. Manos K., Antonopoulos A. Analytical Loss Modeling for MOSFET-Based Modular High Frequency Converters. – IEEE 11th International Conference on Power Electronics and ECCE Asia, 2023, pp. 1795–1804.
20. Friedli T., Hartmann M., Kolar J.W. The Essence of Three-Phase PFC Rectifier Systems – Part II. – IEEE Transactions on Power Electronics, 2014, 29(2), pp. 543–560, DOI:10.1109/TPEL.2013.2258472.
21. Nawawi A. et al. Design and Demonstration of High-Power Density Inverter for Aircraft Applications. – IEEE Transactions on Industry Applications, 2017, 53(2), pp. 1168–1176, DOI:10.1109/TIA.2016.2623282.
22. Lai R. et al. A Systematic Topology Evaluation Methodology for High-Density Three-Phase PWM AC-AC Converters. – IEEE Transactions on Power Electronics, 2008, 23(6), pp. 2665–2680, DOI: 10.1109/TPEL.2008.2005381.
23. Luckett B., He J.B. Multi-Objective Design Optimization of Electric Aircraft Propulsion Power Converters. – IEEE Transportation Electrification Conference & Expo, 2022, pp. 456–461, DOI: 10.1109/ITEC53557.2022.9814020.
24. Lim Z. et al. Design of 100 kVA SiC Power Converter for Aircraft Electric Starter Generator – IEEE 4th Southern Power Electronics Conference, 2018, DOI:10.1109/SPEC.2018.8635866.
25. Kolar J.W., Round S.D. Analytical Calculation of the RMS Current Stress on the DC-Link Capacitor of Voltage-PWM Converter Systems. – IEE Proceedings–Electric Power Applications, 2006, 153(4), pp. 535–543, DOI:10.1049/ip-epa:20050458.
---
Результаты исследования получены при финансовой поддержке Минобрнауки России (Грант на проведение крупных научных проектов по приоритетным направлениям научно-технологического развития, соглашение № 075-15-2024-558)
#
1. Alyoshin B.S. et al. Elektrichestvo – in Russ. (Electricity), 2023, No. 2, pp. 4–12.
2. Varyuhin A.N. et al. Elektrichestvo – in Russ. (Electricity), 2021, No. 8, pp. 4–12.
3. Moshkunov S.I., Homich V.Yu., Shershunova Е.А. Pis'ma v Zhurnal tekhnicheskoy fiziki – in Russ. (Letters to the Journal of Technical Physics), 2020, vol. 46, No. 15, pp. 22–24.
4. Rendón M.A. et al. Aircraft Hybrid-Electric Propulsion: Development Trends, Challenges and Opportunities. – Journal of Control. Autom. Electr. Syst., 2021, 32(5), pp. 1244–1268, DOI:10. 1007/s40313-021-00740-x.
5. Commercial Aircraft Propulsion and Energy Systems Research: Reducing Global Carbon Emissions. Washington, DC: The National Academies Press, 2016, 122 p., DOI: 10.17226/23490.
6. Varyuhin A.N. et al. Doklady Rossiyskoy akademii nauk. Fizika, tekhnicheskie nauki – in Russ. (Reports of the Russian Academy of Sciences. Physics, Technical Sciences), 2022, vol. 503, No. 1, pp. 63–68.
7. Ebersberger J. et al. Potentials and Comparison of Inverter Topologies for Future All-Electric Aircraft Propulsion. – IEEE Journal of Emerging and Selected Topics in Power Electronics, 2022, 10 (5), pp. 5264–5279, DOI: 10.1109/JESTPE.2022.3164804.
8. Janjamraj N., Hiranvarodom S., Pirajnanchai V. Opimized Harmonic of 27-Level Inverter for Aircraft Application Using Particle Swarm Optimization. – IEEE International Conference on Power, Energy and Innovations, 2019, pp. 94–97. DOI: 10.1109/ICPEI47862. 2019.8945015.
9. Wang D et al. Multilevel Inverters for Electric Aircraft Applications: Current Status and Future Trends. – IEEE Trans. Transp. Electrif, 2023, DOI:10.1109/TTE.2023.3296284.
10. Sathler H.H. Optimization of GaN-Based Series-Parallel Multilevel Three-Phase Inverter for Aircraft Applications: Dissertation. Université Paris-Saclay, 2021.
11. Li Y. et al. 500 kW Forced Air-Cooled Silicon Carbide (SiC) Three-Phase DC/AC Converter with a Power Density of 1.246 MW/m 3 and Efficiency >98.5%. – IEEE Transactions on Industry Applications, 2021, 57(5), pp. 5013–5027, DOI:10.1109/TIA.2021.3087546.
12. Modeer T. et al. Design of a GaN-Based Interleaved Nine-Level Flying Capacitor Multilevel Inverter for Electric Aircraft Applications. – IEEE Transactions on Power Electronics, 2020, 35(11), pp. 12153–12165, DOI:10.1109/TPEL.2020.2989329.
13. Wang F. et al. MW-Class Cryogenically-Cooled Inverter for Electric-Aircraft Applications. – AIAA Propulsion and Energy 2019 Forum, 2019, DOI:10.2514/6.2019-4473.
14. Varyuhin A.N. et al. Prikladnaya fizika – in Russ. (Applied Physics), 2021, No. 1, pp. 75–81.
15. Sunbul A. et al. A Comprehensive Steady-State Analysis for Modular Multi-Parallel Rectifiers (MMR) with Shared DC-Link. – IEEE Transactions on Industry Applications, 2023, 59(2), pp. 1969–1981, DOI:10.1109/TIA.2022.3231578.
16. Ye Z. et al. Control of Circulating Current in Two Parallel Three-Phase Boost Rectifiers. – IEEE Transactions on Power Electronics, 2002, 17(5), pp. 609–615, DOI:10.1109/TPEL.2002.802170.
17. Graovac D., Purschel M., Kiep A. MOSFET Power Losses Calculation Using the Data-Sheet Parameters. –Application Note, 2006, 1.1.
18. Stark R. et al. Estimation of Switching Losses Using Simplified Compact Models for SiC Power MOSFETs. – IEEE Design Methodologies Conference, 2021, DOI: 10.1109/DMC51747. 2021.9529934.
19. Manos K., Antonopoulos A. Analytical Loss Modeling for MOSFET-Based Modular High Frequency Converters. – IEEE 11th International Conference on Power Electronics and ECCE Asia, 2023, pp. 1795–1804.
20. Friedli T., Hartmann M., Kolar J.W. The Essence of Three-Phase PFC Rectifier Systems – Part II. – IEEE Transactions on Power Electronics, 2014, 29(2), pp. 543–560, DOI:10.1109/TPEL.2013.2258472.
21. Nawawi A. et al. Design and Demonstration of High-Power Density Inverter for Aircraft Applications. – IEEE Transactions on Industry Applications, 2017, 53(2), pp. 1168–1176, DOI:10.1109/TIA.2016.2623282.
22. Lai R. et al. A Systematic Topology Evaluation Methodology for High-Density Three-Phase PWM AC-AC Converters. – IEEE Transactions on Power Electronics, 2008, 23(6), pp. 2665–2680, DOI: 10.1109/TPEL.2008.2005381.
23. Luckett B., He J.B. Multi-Objective Design Optimization of Electric Aircraft Propulsion Power Converters. – IEEE Transportation Electrification Conference & Expo, 2022, pp. 456–461, DOI: 10.1109/ITEC53557.2022.9814020.
24. Lim Z. et al. Design of 100 kVA SiC Power Converter for Aircraft Electric Starter Generator – IEEE 4th Southern Power Electronics Conference, 2018, DOI:10.1109/SPEC.2018.8635866.
25. Kolar J.W., Round S.D. Analytical Calculation of the RMS Current Stress on the DC-Link Capacitor of Voltage-PWM Converter Systems. – IEE Proceedings–Electric Power Applications, 2006, 153(4), pp. 535–543, DOI:10.1049/ip-epa:20050458
---
The study results have been obtained with the financial support of the Ministry of Education and Science of the Russian Federation (Grant for major scientific projects in priority areas of scientific and technological development, Agreement No. 075-15-2024-558)