Optimizing a Fully HTS Synchronous Generator and Calculating the Losses in Its Windings

  • Nikolay S. IVANOV
  • Vasiliy V. ZUBKO
  • Vladimir A. KADEROV
  • Nikita A. MALEVICH
  • Taisiya M. TEREKHOVA
Keywords: HTS synchronous generator, optimization, AC losses

Abstract

New-generation aviation power systems that combine high specific power, high efficiency, and minimal carbon dioxide emissions are nowadays actively developed. This is especially important in view of more and more stringent environmental regulations and energy efficiency requirements in the aviation industry. One of promising research areas in this field is the use of high-temperature superconductivity (HTS) technologies, which have a potential to significantly improve the performance of electric machines. Two fully superconducting power generators with a capacity of 10 MW each, designed for use on aircraft are considered. Both generators operate at cryogenic temperatures of 20 K, but have different design constraints. For each generator, its electromagnetic characteristics were optimized using a finite element analysis, and losses in high-temperature superconducting windings operating at alternating current were calculated. By using the obtained study results, it is possible to evaluate the influence of design solutions on the performance of generators, thereby contributing to the development of highly efficient new-generation aviation power systems. These systems, which use HTS technologies, meet the current demands of the aviation industry for efficiency and reduction of negative environmental impact.

Author Biographies

Nikolay S. IVANOV

(Moscow Aviation Institute (National Research University), Moscow, Russia) – Head of the Laboratory "Hybrid Electric Power Plants" of the Advanced Engineering School, Cand. Sci. (Eng.).

Vasiliy V. ZUBKO

(JSC “VNIIKP”; Moscow Aviation Institute (National Research University), Moscow, Russia)  – Chief Researcher; Leading Researcher, Dr. Sci. (Eng.).

Vladimir A. KADEROV

(Moscow Aviation Institute (National Research University), Moscow, Russia) – Junior Researcher of the Electric Power, Electromechanical and Biotechnical Systems Dept. (Eng.)

Nikita A. MALEVICH

(Moscow Aviation Institute (National Research University), Moscow, Russia) –  Engineer of the Electric Power, Electromechanical and Biotechnical Systems Dept.

Taisiya M. TEREKHOVA

(Moscow Aviation Institute (National Research University), Moscow, Russia) –Engineer of the Laboratory "Hybrid Electric Power Plants" of the Advanced Engineering School.

References

1. Ковалев К.Л. и др. ВТСП электрические машины: актуальные проекты и перспективные области применения. – Электричество, 2023, № 8, c. 4–12.
2. Chow C.T., Ainslieb M.D., Chaua K.T. High Temperature Superconducting Rotating Electrical Machines: An Overview. – Energy Reports, 2023, 9(8), pp. 1124–1156, DOI:10.1016/j.egyr.2022.11.173.
3. Liu D. et al. Preliminary Assessment of New Armature Winding Concepts for High-Speed Superconducting Motors. – IEEE Transactions on Applied Superconductivity, 34(3), DOI 10.1109/TASC.2024.3371960.
4. Alvarez P. et al. Design of Helical Winding for Slotless Partially Superconducting Electric Machines for Aircraft Propulsion. – IEEE Access, 2024, 12, pp. 54182–54190, DOI 10.1109/ACCESS.2024.3386956.
5. Haran K.S. et al. High Power Density Superconducting Rotating Machines – Development Status and Technology Roadmap. – Superconductor Science and Technology, 2017, 30(12), DOI:10.1088/1361-6668/aa833e.
6. Журавлев С.В. и др. Расчет магнитного поля в активной зоне электрической машины с кольцевой сверхпроводниковой обмоткой якоря при наличии внешнего экрана. – Электричество, 2019, № 9, с. 41–49.
7. Dezhin D., Ilyasov R. Development of Fully Superconducting 5 MW Aviation Generator with Liquid Hydrogen Cooling. – EUREKA: Physics and Engineering, 2022, No.1, DOI 10.21303/2461-4262.2022.001771.
8. Zhou X. et al. Conceptual Design, AC Loss Calculation, and Optimization of an Airborne Fully High Temperature Superconducting Generator. – Physica C-Superconductivity and Its Applications, 2023, 605(5), DOI:10.1016/j.physc.2022.1354207.
9. Xue S. et al. Stator Optimization of Wind Power Generators with High-Temperature Superconducting Armature Windings and Permanent Magnet Rotor. – IEEE Transactions on Applied Superconductivity, 2020, 31(2), DOI:10.1109/TASC.2020.3037057.
10. Li J. et al. Structure Optimization of a Superconducting Linear Generator with YBCO Tape Windings. – IEEE Transactions on Applied Superconductivity, 2021, 31(5), pp. 10–13, DOI 10.1109/TASC.2021.3058077.
11. Colle A. et al. Load Test and Efficiency Map Measurement of 50 kW Class Induction/Synchronous Superconducting Machine (HTS-ISM). – IEEE Transactions on Applied Superconductivity, 2021, 31(4), DOI 10.1109/TASC.2021.3074320.
12. Зубко В.В., Занегин С.Ю., Иванов Н.С. Анализ потерь в обмотках и стопках из ВТСП-лент второго поколения. – Электричество, 2020, № 5, с. 54–60.
13. Zanegin S.Y. et al. Experimental and Numerical Study of AC Losses in HTS Coils of AC Electric Machines. – Russian Electrical Engineering, 2022, 93(6), pp. 424–429, DOI:10.3103/S1068371222060104.
14. Dependence of the SuperOx HTS Tape on the Magnetic Field [Электрон. ресурс]. URL:https://htsdb.wimbush.eu/ (дата обращения 12.07.2024).
15. Norris W.T. Calculation of Hysteresis Losses in Hard Superconductors Carrying AC: Isolated Conductors and Edges of Thin Sheet. – Journal of Physics D, 1970, 3(4), pp. 489–507, DOI:10.1088/0022-3727/3/4/308.
---
Работа выполнена в рамках государственного задания Минобрнауки России, номер темы FSFF-2023-0005
#
1. Kovalev K.L. et al. Elektrichestvo – in Russ. (Electricity), 2023, No. 8, pp. 4–12.
2. Chow C.T., Ainslieb M.D., Chaua K.T. High Temperature Superconducting Rotating Electrical Machines: An Overview. – Energy Reports, 2023, 9(8), pp. 1124–1156, DOI:10.1016/j.egyr.2022.11.173.
3. Liu D. et al. Preliminary Assessment of New Armature Win-ding Concepts for High-Speed Superconducting Motors. – IEEE Transactions on Applied Superconductivity, 34(3), DOI 10.1109/TASC.2024.3371960.
4. Alvarez P. et al. Design of Helical Winding for Slotless Partially Superconducting Electric Machines for Aircraft Propulsion. – IEEE Access, 2024, 12, pp. 54182–54190, DOI 10.1109/ACCESS.2024.3386956.
5. Haran K.S. et al. High Power Density Superconducting Rotating Machines – Development Status and Technology Roadmap. – Superconductor Science and Technology, 2017, 30(12), DOI:10.1088/ 1361-6668/aa833e.
6. Zhuravlev S.V. et al. Elektrichestvo – in Russ. (Electricity), 2019, No. 9, pp. 41–49.
7. Dezhin D., Ilyasov R. Development of Fully Superconducting 5 MW Aviation Generator with Liquid Hydrogen Cooling. – EUREKA: Physics and Engineering, 2022, No.1, DOI 10.21303/2461-4262.2022.001771.
8. Zhou X. et al. Conceptual Design, AC Loss Calculation, and Optimization of an Airborne Fully High Temperature Superconducting Generator. – Physica C-Superconductivity and Its Applications, 2023, 605(5), DOI:10.1016/j.physc.2022.1354207.
9. Xue S. et al. Stator Optimization of Wind Power Generators with High-Temperature Superconducting Armature Windings and Permanent Magnet Rotor. – IEEE Transactions on Applied Superconductivity, 2020, 31(2), DOI:10.1109/TASC.2020.3037057.
10. Li J. et al. Structure Optimization of a Superconducting Linear Generator with YBCO Tape Windings. – IEEE Transactions on Applied Superconductivity, 2021, 31(5), pp. 10–13, DOI 10.1109/TASC.2021.3058077.
11. Colle A. et al. Load Test and Efficiency Map Measurement of 50 kW Class Induction/Synchronous Superconducting Machine (HTS-ISM). – IEEE Transactions on Applied Superconductivity, 2021, 31(4), DOI 10.1109/TASC.2021.3074320.
12. Zubko V.V., Zanegin S.Yu., Ivanov N.S. Elektrichestvo – in Russ. (Electricity), 2020, No. 5, pp. 54–60.
13. Zanegin S.Y. et al. Experimental and Numerical Study of AC Losses in HTS Coils of AC Electric Machines. – Russian Electrical Engineering, 2022, 93(6), pp. 424–429, DOI:10.3103/S1068371222060104.
14. Dependence of the SuperOx HTS Tape on the Magnetic Field [Electron. resource]. URL:https://htsdb.wimbush.eu/ (Date of appeal 12.07.2024).
15. Norris W.T. Calculation of Hysteresis Losses in Hard Superconductors Carrying AC: Isolated Conductors and Edges of Thin Sheet. – Journal of Physics D, 1970, 3(4), pp. 489–507, DOI:10.1088/0022-3727/3/4/308
---
This work was carried out under a state assignment of the Ministry of Education and Science of the Russian Federation, project no. FSFF-2023-0005
Published
2024-08-29
Section
Article