Analysis of Electromagnetic Processes in a Transformer Type Magnetohydrodynamic Pump for Liquid Metal Transportations

  • Sergey A. GANDZHA
  • Yaroslav S. UL'MAN
  • Dmitriy S. GANDZHA
Keywords: secondary remelting, melt mixing, mechanical method, electromagnetic method, induction magnetodynamic pump, digital model, digital twin, finite element method

Abstract

The primary production of aluminum from natural minerals is associated with high energy and economic costs, while aluminum can be remelted almost an infinite number of times. Aluminum scrap recycling requires less energy and is carried out using a simpler technology. For this reason, the share of recycled aluminum in the structure of its total production is steadily increasing. During the melting process, it is necessary to mix the molten mass by one of the known methods to obtain its uniformity. For small and medium-sized enterprises, these methods should be simple, reliable and economically efficient. The aim of the study was to develop a cost-effective method for mixing the melt with minimal modification of existing furnaces and applied remelting technologies. The article suggests a method combining mechanical mixing and the use of electromagnetic forces to transfer the melt from one part of the bath to another. An induction magnetohydrodynamic AC pump was used to implement the method. The concept has been tested on a digital model implemented in the Ansys Electronics Desktop software package in the Transient mode for a specific furnace of an industrial customer. The proposed approach can be applied for almost any secondary remelting furnace.

Author Biographies

Sergey A. GANDZHA

(South Ural State University" (National Research University), Chelyabinsk, Russia) – Professor of the Electric Drive, Mechatronics and Electromechanics Dept, Dr. Sci. (Eng.), Professor.

Yaroslav S. UL'MAN

(South Ural State University" (National Research University), Chelyabinsk, Russia) – Postgraduate Student.

Dmitriy S. GANDZHA

(South Ural State University" (National Research University), Chelyabinsk, Russia) – Applicant.

References

1. International Aluminium Institute [Электрон. ресурс], URL: https://international-aluminium.org (дата обращения 20.07.2024).
2. Бутырин П.А., Тимофеев В.Н. Электротехнологии производства алюминия и его сплавов в России. – Электричество, 2024, № 4, с. 15–26.
3. Портнова И.В. Повышение эффективности перемешивания металла в ванне путем совершенствования конструкции дуговой печи постоянного тока малой вместимости: автореф. дис. ... канд. техн. наук. Челябинск, 2017, 20 с.
4. Сайт АО Челябвторцветмет [Электрон. ресурс], URL: https://chvcm.ru/requisite (дата обращения 26.07.2024).
5. Повышение напряжения дуги и удаление азота путем вдувания метана при электроплавке. – Новости черной металлургии за рубежом, 2004, № 4, с. 44–45.
6. Явойский В.И., Дорофеев Г.А., Повх И.Л. Теория продувки сталеплавильной ванны. М.: Металлургия, 1974, 496 с.
7. Юдин А.В. и др. Опыт использования системы DVS для донной продувки металла в условиях ЭСПЦ Молдавского металлургического завода. – Металлург, 2007, № 10, с. 37–38.
8. Ячиков И.М. и др. Интенсификация массопереноса в электропечах постоянного тока. Магнитогорск: МГТУ, 2002, 132 с.
9. Жилин В.Г. и др. Экспериментальное исследование поля скоростей в осесимметричном электро-вихревом течении в цилиндрическом контейнере. – Магнитная гидродинамика, 1986, № 3, с. 110–116.
10. Письменный А.С., Баглай В.М, Письменный А.А. Интенсификация потоков расплавленного металла в жидкой ванне при индукционном нагреве. – Современная электрометаллургия, 2010, № 2, с. 34–39.
11. Чернышов И.А. Электромагнитное воздействие на металлические расплавы. М.: Металлургиздат, 1963, 86 с.
12. Ивочкин Ю.П., Тепляков И.О., Протоковилов И.В. Физическое моделирование электровихревых течений при ЭШП. – Современная электрометаллургия, 2013, № 1(110), с. 3–7.
13. Тимофеев В.Н., Головенко Е.А., Кузнецов Е.В. Применение МГД устройств в металлургии. Красноярск: СФУ, 2007, 298 с.
14. Смолин Г.К., Федорова С.В. МГД-насос-дозатор. Екатеринбург: Изд-во Рос. гос. проф.-пед. ун-та, 2003, 129 с.
15. Тимофеев В.Н., Хацаюк М.Ю. Анализ электромагнитных процессов магнитогидродинамического перемешивания жидких металлов. – Электричество, 2017, № 1, с. 35–44.
16. Тимофеев В.Н., Первухин М.В., Хацаюк М.Ю. Магнитогидродинамические технологии в плавильно-литейном производстве алюминиевых сплавов. – Индукционный нагрев, 2012, № 4, с. 15–21.
17. Тимофеев В.Н., Хацаюк М.Ю., Максимов А.А. Расширенная аналитическая модель МГД-перемешивателя. – Электрометаллургия, 2017, № 10, с. 28–38.
18. Хацаюк М.Ю. Теория и моделирование магнитогидродинамических процессов в электротехнологических комплексах металлургического назначения: автореф. дис. … докт. техн. наук. СПб, 2019, 39 с.
19. Вольдек А.Н. Электрические машины. Л.: Энергия, 1978, 832 с.
20. Копылов И.П. Электрические машины. М.: Высшая школа, 2006, 607 с.
21. Копылов И.П. и др. Проектирование электрических машин. М.: Высшая школа, 2005, 767 с.
22. Ганджа С.А. и др. Разработка инженерной методики расчета магнитных систем с постоянными магнитами на основе метода конечных элементов. – Вестник ПНИПУ. Электротехника, информационные технологии, системы управления, 2019, № 29, с. 58–74.
23. Ганджа С.А. Вентильные электрические машины с аксиальным магнитным потоком. Анализ, синтез, внедрение в производство: автореф. дис. … докт. техн. наук. Екатеринбург, 2012, 42 с.
24. Gandzha S., Kosimov B., Aminov D. Application of the Ansys Electronics Desktop Software Package for Analysis of Claw-Pole Synchronous Motor. – Machines, 2019, 7(4), DOI: 10.3390/machines7040065.
---
Исследование выполнено при финансовой поддержке АО «Челябвторцветмет» (хозяйственный договор от 07.12.2021№ 2021431)
#
1. International Aluminium Institute [Electron. resource], URL: https://international-aluminium.org (Date of appeal 20.07.2024).
2. Butyrin P.A., Timofeev V.N. Elektrichestvo – in Russ. (Electricity), 2024, No. 4, pp. 15–26.
3. Portnova I.V. Povyshenie effektivnosti peremeshivaniya metalla v vanne putem sovershenstvovaniya konstruktsii dugovoy pechi postoyannogo toka maloy vmestimosti: avtoref. dis. ... kand. tekhn. nauk (Improving the Efficiency of Mixing Metal in a Bath by Improving the Design of a Low-Capacity DC Arc Furnace: Abstract Dis. … Cand. Sci. (Eng.)). Chelyabinsk, 2017, 20 p.
4. JSC Cheliabvtortsvetmet [Electron. resource], URL: https://chvcm.ru/requisite (Date of appeal 26.07.2024).
5. Novosti chernoy metallurgii za rubezhom – in Russ. (Ferrous Metallurgy News Abroad), 2004, No. 4, pp. 44–45.
6. Yavoyskiy V.I., Dorofeev G.A., Povh I.L. Teoriya produvki staleplavil'noy vanny (The Theory of Purging a Steelmaking Bath). M.: Metallurgiya, 1974, 496 p.
7. Yudin А.V. et al. Metallurg – in Russ. (Metallurgist), 2007, No. 10, pp. 37–38.
8. Yachikov I.M. et al. Intensifikatsiya massoperenosa v elektro-pechah postoyannogo toka (Intensification of Mass Transfer in DC Electric Furnaces). Magnitogorsk: MGTU, 2002, 132 p.
9. Zhilin V.G. et al. Magnitnaya gidrodinamika – in Russ. (Magnetic Hydrodynamics), 1986, No. 3, pp. 110–116.
10. Pis'mennyy A.S., Baglay V.M, Pis'mennyy А.А. Sovremen-naya elektrometallurgiya – in Russ. (Modern Electrometallurgy), 2010, No. 2, pp. 34–39.
11. Chernyshov I.A. Elektromagnitnoe vozdeystvie na metalli-cheskie rasplavy (Electromagnetic Effect on Metal Melts). M.: Metallurgizdat, 1963, 86 p.
12. Ivochkin Yu.P., Teplyakov I.O., Protokovilov I.V. Sovre-mennaya elektrometallurgiya – in Russ. (Modern Electrometallurgy), 2013, No. 1(110), pp. 3–7.
13. Timofeev V.N., Golovenko E.A., Kuznetsov E.V. Primenenie MGD ustroystv v metallurgii (Application of MHD Devices in Metallurgy). Krasnoyarsk: SFU, 2007, 298 p.
14. Smolin G.K., Fedorova S.V. MGD-nasos-dozator (MGD-metering pump). Ekaterinburg: Izd-vo Ros. gos. prof.-ped. un-ta, 2003, 129 p.
15. Timofeev V.N., Khatsayuk M.Yu. Elektrichestvo – in Russ. (Electricity), 2017, No. 1, pp. 35–44.
16. Timofeev V.N., Pervuhin M.V., Khatsayuk M.Yu. Induk-tsionnyy nagrev – in Russ. (Induction Heating), 2012, No. 4, pp. 15–21.
17. Timofeev V.N., Khatsayuk M.Yu., Maksimov А.А. Elektro-metallurgiya – in Russ. (Elektrometallurgiya), 2017, No. 10, pp. 28–38.
18. Khatsayuk M.Yu. Teoriya i modelirovanie magnitogidrodina-micheskih protsessov v elektrotekhnologicheskih kompleksah metallur-gicheskogo naznacheniya: avtoref. dis. … dokt. tekhn. nauk (Theory and Modeling of Magnetohydrodynamic Processes in Electrotechnological Complexes of Metallurgical Purpose: Abstract Dis. ... Dr. Sci. (Eng.)). SPb., 2019, 39 p.
19. Vol'dek A.N. Elektricheskie mashiny (Electric Machines). L.: Energiya, 1978, 832 p.
20. Kopylov I.P. Elektricheskie mashiny (Electric Machines). М.: Vysshaya shkola, 2006, 607 p.
21. Kopylov I.P. et al. Proektirovanie elektricheskih mashin (Design of Electric Machines). M.: Vysshaya shkola, 2005, 767 p.
22. Gandzha S.А. et al. Vestnik PNIPU. Elektrotekhnika, infor-matsionnye tekhnologii, sistemy upravleniya – in Russ. (Bulletin of PNRPU. Electrical Engineering, Information Technology, Control Systems), 2019, No. 29, pp. 58–74.
23. Gandzha S.А. Ventil'nye elektricheskie mashiny s aksial'nym magnitnym potokom. Analiz, sintez, vnedrenie v proizvodstvo: avtoref. dis. … dokt. tekhn. Nauk (Valve Electric Machines with Axial Magnetic Flux. Analysis, Synthesis, Introduction into production: Abstract. Dis. ... Dr. Sci. (Eng.)). Ekaterinburg, 2012, 42 p.
24. Gandzha S., Kosimov B., Aminov D. Application of the Ansys Electronics Desktop Software Package for Analysis of Claw-Pole Synchronous Motor. – Machines, 2019, 7(4), DOI: 10.3390/machines7040065
---
The study was carried out with the financial support of JSC "Cheliabvtortsvetmet" (business agreement No. 2021431 dated December 7, 2021)
Published
2024-08-29
Section
Article