Thermal Calculation of a New Synchronous Generator Design with Transverse Flux

  • Viktor N. ANTIPOV
  • Andrey D. GROZOV
  • Anna V. IVANOVA
Keywords: transverse flux, permanent magnets, synchronous generator, topology, convective heat transfer, similarity criteria, 3D modeling

Abstract

Electric machines with transverse flux are mainly used in low-speed electric drive applications, in particular, for wind turbines and vehicle propulsion systems. Owing to its possibility to produce higher torque densities, the design of transverse flux electric machines is seen as a promising option for decentralized wind energy. The article presents a calculated assessment of the thermal state of the 5 kW transverse flux synchronous generator with excitation from permanent magnets of a new patent-protected design with a double stator located on one side of the rotor. The values of the machine housing heat transfer coefficients are specified according to the product of the Grashof and Prandtl criteria for both a single-phase module and a three-phase machine. The average values by which the temperatures of the cooling surfaces, stator winding and rotor disk exceed their standardized levels were calculated using the dependence between similarity criteria. Full 3D models of the single-phase module and three-phase generator with transverse magnetic flux are developed. The 3D simulation results have confirmed the correctness of the thermal state assessment of the new design, obtained using the dependence between the similarity criteria.

Author Biographies

Viktor N. ANTIPOV

(I.V. Grebenshchikov Institute of Silicate Chemistry of the Russian Academy of Sciences, St. Petersburg, Russia) – Leading Researcher, Dr. Sci. (Eng.).

Andrey D. GROZOV

(I.V. Grebenshchikov Institute of Silicate Chemistry of the Russian Academy of Sciences, St. Petersburg, Russia) – Research Associate.

Anna V. IVANOVA

(I.V. Grebenshchikov Institute of Silicate Chemistry of the Russian Academy of Sciences, St. Petersburg, Russia) – Senior Researcher, Cand. Sci. (Phys.-Math.).

References

1. Антипов В.Н., Грозов А.Д., Иванова А.В. Исследование параметров синхронного ветрогенератора с поперечным потоком для арктического региона. – Электричество, 2024, № 3, с. 59–67.
2. Ballestín-Bernad V., Artal-Sevil J.S., Domínguez-Navarro J.A. A Review of Transverse Flux Machines Topologies and Design. – Energies, 2021, vol. 14, DOI: 10.3390/en14217173.
3. Boomiraja B., Kanagaraj R. Torque Density Improvement in Transverse Flux Machine using Disc Rotor. – IEEE International WIT Conference on Electrical and Computer Science, 2019, pp. 22–27, DOI: 10.1109/WITCONECE48374.2019.9092919.
4. Bang D. et al. Design of a Lightweight Transverse Flux Permanent Magnet Machine for Direct-drive Wind Turbines. – Industry Applications Society Annual Meeting, 2008, DOI:10.1109/08IAS.2008.71.
5. Husain T., Hasan I., Sozer Y. Design Considerations of a Transverse Flux Machine for Direct-Drive Wind Turbine Applications. – IEEE Transactions on Industry Applications, 2018, 54(4), pp. 3604–3615, DOI: 10.1109/TIA.2018.2814979.
6. Пат. RU2818077C1. Электрическая машина с поперечным потоком / В.Н. Антипов, А.Д. Грозов, А.В. Иванова, 2024.
7. Сипайлов Г.А., Санников Д.И., Жадан В.А. Тепловые, гидравлические и аэродинамические расчеты в электрических машинах. М.: Высшая школа, 1989, 239 с.
8. Yu B. et al. Thermal Analysis of a Novel Cylindrical Transverse-Flux Permanent-Magnet Linear Machine. – Energies, 2015, vol. 8, pp. 7874–7896, DOI: 10.3390/en8087874.
9. QuickField 5.8. Finite Element Analysis System. User's Guide. Swedenborg: Tera Analysis Ltd., 2011, 257 p.
10. Bianchi N. Electrical Machine Analysis Using Finite Elements. CRC Press, Taylor & Francis Group, 2005, 304 p.
11. Marignetti F., Delli Colli V. Thermal Analysis of an Axial Flux Permanent-Magnet Synchronous Machine. – IEEE Trans. on Magnetics, 2009, 45(7), pp. 2970–2975, DOI: 10.1109/TMAG.2009.2016415.
12. Антипов В.Н., Грозов А.Д., Иванова А.В. Трехмерное моделирование теплового поля быстроходного турбогенератора. – Электротехника, 2013, № 9, с. 487–491.
13. Вэйли Л. и др. Исследование различных конструкций медного экрана в торцевой зоне мощного турбогенератора на основе трехмерного моделирования. – Электричество, 2015, № 6, с. 39–46.
14. Hosseini S., Moghani J.S., Jensen B.B. Accurate Modeling of a Transverse Flux Permanent Magnet Generator Using 3D Finite Element Analysis. – Advances in Electrical and Computer Engineering, 2011, 11(3), DOI: 10.4316/AECE.2011.03019.
15. Hasan I. et al. Mechanical and Thermal Performance of Transverse Flux Machines. – IEEE Energy Conversion Congress and Exposition, 2017, pp. 1205–1211, DOI: 10.1109/ECCE.2017.8095926
---
Работа выполнена в рамках Госзадания ИХС РАН (регистрационный номер темы 1023032900322-9-1.4.3).
#
1. Antipov V.N., Grozov A.D., Ivanova A.V. Elektrichestvo – in Russ. (Electricity), 2024, No. 3, pp. 59–67.
2. Ballestín-Bernad V., Artal-Sevil J.S., Domínguez-Navarro J.A. A Review of Transverse Flux Machines Topologies and Design. – Energies, 2021, vol. 14, DOI: 10.3390/en14217173.
3. Boomiraja B., Kanagaraj R. Torque Density Improvement in Transverse Flux Machine using Disc Rotor. – IEEE International WIT Conference on Electrical and Computer Science, 2019, pp. 22–27, DOI: 10.1109/WITCONECE48374.2019.9092919.
4. Bang D. et al. Design of a Lightweight Transverse Flux Permanent Magnet Machine for Direct-drive Wind Turbines. – Industry Applications Society Annual Meeting, 2008, DOI:10.1109/08IAS.2008.71.
5. Husain T., Hasan I., Sozer Y. Design Considerations of a Transverse Flux Machine for Direct-Drive Wind Turbine Applications. – IEEE Transactions on Industry Applications, 2018, 54(4), pp. 3604–3615, DOI: 10.1109/TIA.2018.2814979.
6. Pаt. RU2818077C1. Elektricheskaya mashina s poperechnym potokom (Transverse Flux Electrical Machine) / V.N. Antipov, A.D. Grozov, A.V. Ivanova, 2024.
7. Sipaylov G.A., Sannikov D.I., Zhadan V.А. Teplovye, gidrav-licheskie i aerodinamicheskie raschety v elektricheskih mashinah (Thermal, Hydraulic and Aerodynamic Calculations in Electric Machines). M.: Vysshaya shkola, 1989, 239 p.
8. Yu B. et al. Thermal Analysis of a Novel Cylindrical Transverse-Flux Permanent-Magnet Linear Machine. – Energies, 2015, vol. 8, pp. 7874–7896, DOI: 10.3390/en8087874.
9. QuickField 5.8. Finite Element Analysis System. User's Guide. Swedenborg: Tera Analysis Ltd., 2011, 257 p.
10. Bianchi N. Electrical Machine Analysis Using Finite Elements. CRC Press, Taylor & Francis Group, 2005, 304 p.
11. Marignetti F., Delli Colli V. Thermal Analysis of an Axial Flux Permanent-Magnet Synchronous Machine. – IEEE Trans. on Magnetics, 2009, 45(7), pp. 2970–2975, DOI: 10.1109/TMAG.2009.2016415.
12. Antipov V.N., Grozov A.D., Ivanova A.V. Elektrotekhnika – in Russ. (Elecrical Engineering), 2013, No. 9, pp. 487–491.
13. Veyli L. et al. Elektrichestvo – in Russ. (Electricity), 2015, No. 6, pp. 39–46.
14. Hosseini S., Moghani J.S., Jensen B.B. Accurate Modeling of a Transverse Flux Permanent Magnet Generator Using 3D Finite Element Analysis. – Advances in Electrical and Computer Engineering, 2011, 11(3), DOI: 10.4316/AECE.2011.03019.
15. Hasan I. et al. Mechanical and Thermal Performance of Transverse Flux Machines. – IEEE Energy Conversion Congress and Exposition, 2017, pp. 1205–1211, DOI: 10.1109/ECCE.2017.8095926
---
The work was carried out within the framework of the State Assignment of the ISC RAS (topic registration number 1023032900322-9-1.4.3)
Published
2024-08-29
Section
Article