A Study of the Discharge Gap Heterogeneity Effect on the Ozone Generator Parameters
Abstract
The paper presents the results of modeling the resonant power supply circuit of ozone generators (OG) with a heterogeneous discharge gap. Basic types of OG gas gap heterogeneity are considered, which are determined by the type in which the coaxial electrode system deviates from coaxiality, or the electrodes themselves deviate from the cylindrical shape. The discharge gap distribution densities over the electrodes area depending on the type of gas gap heterogeneity are determined. It is shown that the OG with a heterogeneous discharge gap is a nonlinear circuit element the effective capacitance of which depends on the voltage across its electrodes. Resonance curves of the OG with different types of gas gap heterogeneity are obtained. It is found that the resonant frequency in the ozonizer power supply circuit as a whole is determined by the dielectric capacitance, and the resonant amplitude of the voltage across the OG electrodes is not related to the power supply circuit ohmic resistance. The dependence of the “power supply source - ozone generator” system resonant frequency on the gas gap heterogeneity degree is shown. The results of comparison between experimentally measured values of current through and voltage across the OG electrodes and the modeling results are presented. It is shown that the amplitudes of the experimental and modeled current and voltage are in agreement only when the discharge gap heterogeneity is taken into account.
References
2. Самойлович В.Г., Гибалов В.И., Козлов К.В. Физическая химия барьерного разряда. М.: Изд-во МГУ, 1989, 176 с.
3. Темников А.Г. и др. Электрофизические основы техники высоких напряжений. М.: Изд-во МЭИ, 2018, 540 с.
4. Лысов Н.Ю. и др. Оценка влияния неравномерности газового зазора на характеристики объемного барьерного разряда. – Электричество, 2020, № 4, с. 25–34.
5. Lysov N.Y. et al. The Effect of Discharge Gap Nonuniformity on the Energy Characteristics of a Barrier Ozone Generator. – Russian Electrical Engineering, 2021, 92(8), pp. 463–467.
6. Гибалов В.И., Питч Г. Численное моделирование формирования и развития канала микроразряда. – Журнал физической химии, 1994, т. 68, № 65, с. 931–938.
7. Филиппов Ю.В., Вобликова В.А., Пантелеев В.И. Электросинтез озона. М.: Изд-во Московского университета, 1987, 237 с.
8. Manley T.C. The Electric Characteristics of the Ozonator Discharge. – Transactions of the Electrochemical Society, 1943, 84, pp. 83–96, DOI:10.1149/1.3071556.
9. Емельянов Ю.М., Филиппов Ю.В. Физико-химические исследования синтеза озона и принципы конструирования озонаторов. – Журнал физической химии, 1957, т. 31, № 7, с. 1628–1635.
10. Филиппов Ю.В., Емельянов Ю.М. Электрическая теория озонаторов, I. Статические вольтамперные характеристики озонаторов. – Журнал физической химии, 1958, т. 32, № 12, с. 2817–2823.
11. Dong L.F. et al. Concentric-Roll Pattern in a Dielectric Barrier Discharge in Air. – Physics of Plasma, 2010, 17(8):082302-082302-5, DOI:10.1063/1.3466854
12. Zhi Yu L. et al. A Non-Equal Gap Distance Dielectric Barrier Discharge: between a Wedge-Shaped and a Plane-Shaped Electrode. – Plasma Sources Science and Technology, 2021, 30(6), DOI:10.1088/1361-6595/ac02b1.
13. Jin Sh. et al. A non‐Equal Gap Distance Dielectric Barrier Discharge: Between Cone-Shape and Cylinder-Shape Electrodes. – High Voltage, 2021, 7(2), DOI: 10.1049/hve2.12126.
14. Zhang Y.F. et al. Characteristics of the Discharge and Ozone Generation in Oxygen Fed Coaxial DBD Using an Amplitude Modulated AC Power Supply. – Plasma Chemistry and Plasma Processing, 2018, 38(11), pp. 1199–1208, DOI:10.1007/s11090-018-9922-2.
15. Brandenburg R. Dielectric Barrier Discharges: Progress on Plasma Sources and on the Understanding of Regimes and Single Filaments. – Plasma Sources Science and Technology, 2017, 26(5), DOI:10.1088/1361-6595/aa6426.
16. Paschen F. Ueber die zum Funkenübergang in Luft, Wasserstoff und Kohlensäure bei verschiedenen Drucken erforderliche Potentialdifferenz. – Annalen der Physik und Chemie Magazine, 1889, 273(5), 69–96.
---
Работа выполнена в рамках проекта «Моделирование процессов синтеза озона в барьерных озонаторах для систем водоподготовки объектов распределенной энергетики» при поддержке гранта НИУ «МЭИ» на реализацию программы научных исследований «Приоритет 2030: Технологии будущего» в 2022–2024 гг.
#
1. Lunin V.V. et al. Teoriya i praktika polucheniya i primeneniya ozona (Theory and Practice of Ozone Production and Application). M.: Izd-vo Moskovskogo universiteta, 2016, 416 p.
2. Samoylovich V.G., Gibalov V.I., Kozlov K.V. Fizicheskaya himiya bar'ernogo razryada (Physical Chemistry of Barrier Discharge). М.: Izd-vo МGU, 1989, 176 p.
3. Temnikov A.G. et al. Elektrofizicheskiye osnovy tekhniki vysokih napryazheniy (Electrophysical Foundations of High Voltage Engineering). М.: Izd-vo МEI, 2018, 540 p.
4. Lysov N.Yu. et al. Elektrichestvo – in Russ. (Electricity), 2020, No. 4, pp. 25–34.
5. Lysov N.Yu. et al. The Effect of Discharge Gap Nonuniformity on the Energy Characteristics of a Barrier Ozone Generator. – Russian Electrical Engineering, 2021, 92(8), pp. 463–467.
6. Gibalov V.I., Pitch G. Zhurnal fizicheskoy himii – in Russ. (Journal of Physical Chemistry), 1994, vol. 68, No. 65, pp. 931–938.
7. Filippov Yu.V., Voblikova V.A., Panteleev V.I. Elektrosintez ozona (Electrosynthesis of Ozone). М.: Izd-vo Moskovskogo universiteta, 1987, 237 p.
8. Manley T.C. The Electric Characteristics of the Ozonator Discharge. – Transactions of the Electrochemical Society, 1943, 84, pp. 83–96, DOI:10.1149/1.3071556.
9. Emel'yanov Yu.M., Filippov Yu.V. Zhurnal fizicheskoy himii – in Russ. (Journal of Physical Chemistry), 1957, vol. 31, No. 7, pp. 1628–1635.
10. Filippov Yu.V., Emel'yanov Yu.M. Zhurnal fizicheskoy himii – in Russ. (Journal of Physical Chemistry), 1958, vol. 32, No. 12, pp. 2817–2823.
11. Dong L.F. et al. Concentric-Roll Pattern in a Dielectric Barrier Discharge in Air. – Physics of Plasma, 2010, 17(8):082302-082302-5, DOI:10.1063/1.3466854
12. Zhi Yu L. et al. A Non-Equal Gap Distance Dielectric Barrier Discharge: between a Wedge-Shaped and a Plane-Shaped Electrode. – Plasma Sources Science and Technology, 2021, 30(6), DOI:10.1088/1361-6595/ac02b1.
13. Jin Sh. et al. A non‐Equal Gap Distance Dielectric Barrier Discharge: Between Cone-Shape and Cylinder-Shape Electrodes. – High Voltage, 2021, 7(2), DOI: 10.1049/hve2.12126.
14. Zhang Y.F. et al. Characteristics of the Discharge and Ozone Generation in Oxygen Fed Coaxial DBD Using an Amplitude Modulated AC Power Supply. – Plasma Chemistry and Plasma Processing, 2018, 38(11), pp. 1199–1208, DOI:10.1007/s11090-018-9922-2.
15. Brandenburg R. Dielectric Barrier Discharges: Progress on Plasma Sources and on the Understanding of Regimes and Single Filaments. – Plasma Sources Science and Technology, 2017, 26(5), DOI:10.1088/1361-6595/aa6426.
16. Paschen F. Ueber die zum Funkenübergang in Luft, Wasserstoff und Kohlensäure bei verschiedenen Drucken erforderliche Potentialdifferenz. – Annalen der Physik und Chemie Magazine, 1889, 273(5), 69–96
---
The research was financially supported by the National Research University "Moscow Power Engineering Institute", grant for implementation of the scientific research program "Priority 2030: Technologies of the Future" in 2022–2024.