Estimating the Parameters of a Superconducting Hybrid Transformer with a Spatial Magnetic System

  • Vadim Z. MANUSOV
  • Ratmir G. GALEEV
Keywords: HTS, superconductivity, magnetic field, transformer, spatial magnetic system, magnetic circuit, cryostat, hybrid windings, oxidized aluminum

Abstract

Application of high-temperature superconductors (HTS) in power transformers is a promising development line in the electric power industry. The article addresses a study of an operating prototype of a three-phase 25 kV·A transformer that combines a hybrid design of superconducting windings, with a dielectric medium in the form of liquid nitrogen at a temperature of 77 K and a spatial magnetic system. The purpose of the study is to determine the transformer magnetic system that will make the transformer more insensitive to an increase of the HTS winding critical current value in the superconducting state. A theoretically substantiated procedure for calculating heat and mass transfer in the case of using liquid nitrogen as cryogenic dielectric medium is proposed. The procedure takes into account the nature of active power losses in the superconductor during its operation on alternating current, the design of the transformer active and passive elements, and the characteristics of the materials used. The efficiency of using a core with a spatial magnetic system is substantiated, which reduces the influence of leakage fluxes on the HTS windings and, together with the reduced mass of the magnetic circuit, reduces hysteresis losses. The use of a spatial core reduces the cryostat heat transfer and makes it possible to achieve uniform cooling of the HTS windings. The thermodynamic characteristics of a liquid nitrogen filled cryostat in a stationary mode of operation are presented. Owing to their being fire- and explosion safe, as well as having significantly smaller mass and overall dimensions, HTS transformers feature essential advantages over conventional transformers with a usual dielectric medium.

Author Biographies

Vadim Z. MANUSOV

(Yugra State University, Khanty-Mansiysk, Russia) – Professor of the Physics and Mathematics School, Dr. Sci. (Eng.), Professor.

Ratmir G. GALEEV

(Siberian State University of Water Transport, Novosibirsk, Russia) – Postgraduate Student of the Electrical Equipment and Automation Dept.

References

1. Волков Э.П., Джафаров Э.А. Параметры ВТСП трансформатора. – Известия РАН. Энергетика, 2015, № 1, с. 62–83.
2. Kondratowicz-Kucewicz B., Wojtasiewicz G. The Proposal of a Transformer Model with Winding Made of Parallel 2G HTS Tapes with Transpositioners and Its Contact Cooling System. – IEEE Transactions Applied Superconductivity, 2018, vol. 28(4), DOI: 10.1109/TASC.2018.2807585.
3. Hu D. et al. Development of a Single-Phase 330kVA HTS Transformer Using GdBCO Tapes. – Physica C: Superconductivity and its Applications, 2017, vol. 539, DOI: 10.1016/j.physc.2017.06.002.
4. Berger A., Noe M., Kudymov A. Test Results of 60 kVA Current Limiting Transformer with Full Recovery Under Load. – IEEE Transactions on Applied Superconductivity, 2011, vol. 21(3), pp. 1384–1387, DOI: 10.1109/TASC.2010.2088098.
5. Dai S. et al. Development of a 1250-kVA Superconducting Transformer and Its Demonstration at the Superconducting Substation. – IEEE Transactions on Applied Superconductivity, 2017, vol. 26(1), DOI: 10.1109/TASC.2015.2501105.
6. Ковалев К.Л. и др. Высокотемпературный сверхпроводниковый генератор мощностью 1 МВ•А для ветроэнергетических установок. – Электричество, 2017, № 10, с. 4–15.
7. Ковалев К.Л. и др. ВТСП электрические машины: актуальные проекты и перспективные области применения. – Электричество, 2023, № 8, с. 4–12.
8. Фетисов С.С., Зубко В.В. Базовые технологии изготовления силовых кабелей на основе высокотемпературных сверхпроводников второго поколения. – Электричество, 2021, № 6, с. 12–24.
9. Hong H. at al. Practical Calculation Method for the Short-Circuit Current of Power Grids with High Temperature Superconducting Fault Current Limiters. – Journal of Electrical Engineering and Technology, 2020 vol.15, DOI: 10.1007/s42835-019-00295-7.
10. Манусов В.З., Крюков Д.О. Обзор конструкций трансформаторов со сверхпроводящими обмотками. – Электричество, 2019, № 8, c. 4–16.
11. Волков Э.П. и др. Первый в России ВТСП трансформатор 1 МВА, 10/0,4 кВ. – Известия РАН. Энергетика, 2016, № 5, c. 45–56.
12. Манусов В.З., Галеев Р.Г. Высокотемпературный сверхпроводящий трансформатор, работающий на повышенной частоте переменного тока. – Проблемы региональной энергетики, 2023, т. 60, № 4, c. 43–54.
13. Пат. RU 2815169 C1. Сверхпроводящий гибридный трансформатор / В.З. Манусов, Р.Г. Галеев, Б.В. Палагушкин, 2024.
14. Стародубцев Ю.Н. Теория и расчет трансформаторов малой мощности. М.: ИП РадиоСофт, 2017, 321 с.
15. Тихомиров П.М. Расчет трансформаторов. М.: Энергоатомиздат, 1986, 528 с.
16. Xu M., Shi D., Fox R.F. Generalized Critical-State Model for Hard Superconductors. – Phys Rev B Condens Matter, 1990, vol. 42(16), DOI: 10.1103/PhysRevB.42.10773.
17. Манусов В.З., Иванов Д.М. Электротепловые переходные процессы в сети с высокотемпературным сверхпроводящим трансформатором с функцией токоограничения. – Электричество, 2022, № 1, с. 9–17.
18. Levin G.A. et al. AC Losses of Copper Stabilized Multifilament YBCO Coated Conductors. – IEEE Transactions on Applied Superconductivity, 2012, vol. 23(3), DOI: 10.1109/TASC.2012.2232337.
19. Nguyen D.N., Sastry P.V., Schwartz J. Numerical Calculations of the Total AC Loss of Cu-Stabilized YBa2Cu3O7−δ Coated Conductor with a Ferromagnetic Substrate. – Journal of Applied Physics, 2007, vol. 101(5), DOI: 10.1063/1.2712180.
20. Berger A. et al. Comparison of the Efficiency of Superconducting and Conventional Transformers. – Journal of Physics: Conference Series, 2010, vol. 234, DOI 10.1088/1742-6596/234/3/032004.
21. С-Инновация [Электрон. ресурс], URL: https://www.s-innovations.ru (дата обращения 27.09.2024)
22. Малков М.П. и др. Справочник по физико-техническим основам криогеники. М.: Энергоатомиздат, 1985, 432 с.
23. Юшков Ю.Г. и др. Параметры и свойства электроизоляционного покрытия окиси алюминия, осажденного на металле форвакуумным источником. – Прикладная физика, 2020, № 2, с. 53–58
24. Кацман М.М. Электрические машины. М.: Издательский центр «Академия», 2009, 495 с.
25. Chang H. Cryogenic Cooling Temperature of HTS Transformers for Compactness and Efficiency. – IEEE Transactions on Applied Superconductivity, 2003 vol. 13(2), DOI: 10.1109/TASC.2003.813086.
26. ELCUT: Моделирование электромагнитных, тепловых и упругих полей методом конечных элементов. Версия 6.6. Руководство пользователя. СПб.: Издательские решения, 2023, 290 с.
#
1. Volkov E.P., Dzhafarov E.А. Izvestiya RAN. Energetika – in Russ. (News of the Russian Academy of Sciences. Energy Industry), 2015, No. 1, pp. 62–83.
2. Kondratowicz-Kucewicz B., Wojtasiewicz G. The Proposal of a Transformer Model with Winding Made of Parallel 2G HTS Tapes with Transpositioners and Its Contact Cooling System. – IEEE Transactions Applied Superconductivity, 2018, vol. 28(4), DOI: 10.1109/TASC.2018.2807585.
3. Hu D. et al. Development of a Single-Phase 330kVA HTS Transformer Using GdBCO Tapes. – Physica C: Superconductivity and its Applications, 2017, vol. 539, DOI: 10.1016/j.physc.2017.06.002.
4. Berger A., Noe M., Kudymov A. Test Results of 60 kVA Current Limiting Transformer with Full Recovery Under Load. – IEEE Transactions on Applied Superconductivity, 2011, vol. 21(3), pp. 1384–1387, DOI: 10.1109/TASC.2010.2088098.
5. Dai S. et al. Development of a 1250-kVA Superconducting Transformer and Its Demonstration at the Superconducting Substation. – IEEE Transactions on Applied Superconductivity, 2017, vol. 26(1), DOI: 10.1109/TASC.2015.2501105.
6. Kovalev K.L. et al. Elektrichestvo – in Russ. (Electricity), 2017, No. 10, pp. 4–15.
7. Kovalev K.L. et al. Elektrichestvo – in Russ. (Electricity), 2023, No. 8, pp. 4–12.
8. Fetisov S.S., Zubko V.V. Elektrichestvo – in Russ. (Electricity), 2021, No. 6, pp. 12–24.
9. Hong H. at al. Practical Calculation Method for the Short-Circuit Current of Power Grids with High Temperature Superconducting Fault Current Limiters. – Journal of Electrical Engineering and Technology, 2020 vol.15, DOI: 10.1007/s42835-019-00295-7.
10. Manusov V.Z., Kryukov D.O. Elektrichestvo – in Russ. (Electricity), 2019. No. 8, pp. 4–16.
11. Volkov E.P. et al. Izvestiya RAN. Energetika – in Russ. (News of the Russian Academy of Sciences. Energy Industry), 2016, No. 5, pp. 45–56.
12. Manusov V.Z., Galeev R.G. Problemy regional’noy energeti-ki – in Russ. (Problems of the Regional Energetics), 2023, vol. 60, No. 4, pp. 43–54.
13. Pаt. RU 2815169 C1. Sverhprovodyashchiy gibridnyy transfor-mator (Superconducting Hybrid Transformer) / V.Z. Manusov, R.G. Galeev, B.V. Palagushkin, 2024.
14. Starodubtsev Yu.N. Teoriya i raschet transformatorov maloy moshchnosti (Theory and Calculation of Low Power Transformers). M.: IP RadioSoft, 2017, 321 p.
15. Tihomirov P.M. Raschet transformatorov (Transformer Cal-culations). M.: Energoatomizdat, 1986, 528 p.
16. Xu M., Shi D., Fox R.F. Generalized Critical-State Model for Hard Superconductors. – Phys Rev B Condens Matter, 1990, vol. 42(16), DOI: 10.1103/PhysRevB.42.10773.
17. Manusov V.Z., Ivanov D.М. Elektrichestvo – in Russ (Elec-tricity), 2022, No. 1, pp. 9–17.
18. Levin G.A. et al. AC Losses of Copper Stabilized Multifilament YBCO Coated Conductors. – IEEE Transactions on Applied Super-conductivity, 2012, vol. 23(3), DOI: 10.1109/TASC.2012.2232337.
19. Nguyen D.N., Sastry P.V., Schwartz J. Numerical Calculati-ons of the Total AC Loss of Cu-Stabilized YBa2Cu3O7−δ Coated Conductor with a Ferromagnetic Substrate. – Journal of Applied Physics, 2007, vol. 101(5), DOI: 10.1063/1.2712180.
20. Berger A. et al. Comparison of the Efficiency of Superconducting and Conventional Transformers. – Journal of Physics: Conference Series, 2010, vol. 234, DOI 10.1088/1742-6596/234/3/032004.
21. S-Innovatsiya (S-Innovation) [Electron. resource], URL: https://www.s-innovations.ru (Date of appeal 27.09.2024).
22. Malkov M.P. et al. Spravochnik po fiziko-tehnicheskim os-novam kriogeniki (Handbook of Physical and Technical Fundamentals of Cryogenics). M.: Energoatomizdat, 1985, 432 p.
23. Yushkov Yu.G. et al. Prikladnaya fizika – in Russ. (Applied physics), 2020, No. 2, pp. 53–58.
24. Katsman M.M. Elektricheskie mashiny (Electrical Machines). M.: Izdatel’skiy tsentr «Akademiya», 2009, 495 p.
25. Chang H. Cryogenic Cooling Temperature of HTS Transfor-mers for Compactness and Efficiency. – IEEE Transactions on Applied Superconductivity, 2003, 13(2), DOI: 10.1109/TASC.2003.813086.
26. ELCUT: Modelirovanie elektromagnitnyh, teplovyh i uprugih poley metodom konechnyh elementov. Versiya 6.6. Rukovodstvo pol’zovatelya (ELCUT: Modeling of Electromagnetic, Thermal and Elastic Fields Using the Finite Element Method. Version 6.6. User Guide). SPb.: Izdatel’skie resheniya, 2023, 290 p
Published
2024-10-31
Section
Article