The Influence of Solar Power Plants on the Vietnam's Power System Transient Stability

  • Oleg N. KUZNETSOV
  • Hoang Nam PHAM
Keywords: transient stability, limit short circuit clearing time, solar photovoltaic power plant

Abstract

The article examines the effect the share of solar photovoltaic power plants (SPP) in the mix of generating capacities of the Vietnam power system has on its transient stability. A characterization of the Vietnam electric power system is given. The power system mathematical model for studying its transient stability with taking into account solar power plants has been constructed. The SPP model takes into account the constraints imposed on the operation of the inverter electronic switches at a reduced voltage at the plant connection node when a disturbance is applied in the system. The limit short circuit clearing time is considered as the transient stability condition. It has been determined that a small share of SPP can slightly improve the transient stability conditions; i.e., the limit short-circuit clearing time increases. With the SPP share of about 40%, the transient stability conditions become slightly degraded: the limit short-circuit clearing time decreases. A further increase in the SPP share above 50% results in that the computation carried out by the software package fails to converge. In the studied range of the SPP share, the degradation of transient stability conditions is not critical, and the existing relay protection and circuit breakers isolate the short circuit place without disrupting the power system transient stability.

Author Biographies

Oleg N. KUZNETSOV

(National Research University "Moscow Power Engineering Institute", Moscow, Russia) – Docent of the Power System Dept., Cand. Sci. (Eng.), Docent.

Hoang Nam PHAM

(National Research University "Moscow Power Engineering Institute", Moscow, Russia; Vinh University, Vinh, Vietnam) – Postgraduate Student of the Power System Dept.; Teacher of the Electric and Electronic Technology Dept.

References

1. Katiraei F., Agüero J.R. Solar PV Integration Challenges. – IEEE Power and Energy Magazine, 2011, 9(3), pp. 62–71, DOI: 10.1109/MPE.2011.940579.
2. Eftekharnejad S. et al. Impact of Increased Penetration of Photovoltaic Generation on Power Systems. – IEEE Transactions on Power Systems, 2013, 28(2), pp. 893–901, DOI: 10.1109/TPWRS.2012.2216294.
3. Bueno P.G., Hernández J.C., Ruiz-Rodriguez F.J. Stability Assessment for Transmission Systems with Large Utility-Scale Photovoltaic Units. – IET Renewable Power Generation, 2016, 10(5), pp. 584–597, DOI: 10.1049/iet-rpg.2015.0331.
4. Yagami M. et al. Power System Transient Stability Analysis in the Case of High-Penetration Photovoltaics. –IEEE Grenoble Conference PowerTech, 2013, DOI: 10.1109/PTC.2013.6652139.
5. Tamimi B., Cañizares C., Bhattacharya K. System Stability Impact of Large-Scale and Distributed Solar Photovoltaic Generation: The Case of Ontario, Canada. – IEEE Transactions on Sustainable Energy, 2013, 4(3), pp. 680–688, DOI: 10.1109/TSTE.2012.2235151.
6. Till A., You S., Liu Y. Impact of High PV Penetration on Transient Stability — a Case Study on the U.S. ERCOT System. – Renewable Energy and Power Quality Journal, 2020, 18(3), DOI: 10.24084/repqj18.325.
7. Tran-Quoc T. et al. Improvement of Voltage Stability on the Vietnam Power System. – IEEE Power Engineering Society Winter Meeting, 2000, DOI: 10.1109/PESW.2000.850204.
8. Tran-Quoc T. et al. Stability Study for the Vietnam Power System. – IEEE PES Transmission and Distribution Conference and Exposition, 2003, DOI: 10.1109/TDC.2003.1335366.
9. Lerch E. et al. Enhancing the Stability of Vietnamese Power System – From Theory to Practical. – International Electrical Engineering Congress, 2017, DOI: 10.1109/IEECON.2017.8075795.
10. Sanseverino R.E. et al. Review of Potential and Actual Penetration of Solar Power in Vietnam. – Energies, 2020, vol. 13, DOI:10.3390/en13102529.
11. Lee N. et al. Exploring Renewable Energy Opportunities in select Southeast Asian Countries: A Geospatial Analysis of the Levelized Cost of Energy of Utility-Scale Wind and Solar Photovoltaics, 2019, DOI:10.2172/1527336.
12. Decision of the Prime Minister of the Socialist Republic Vietnam No. 2068/QD-TTG (dated 25.11.2015).
13. Decision of the Prime Minister of the Socialist Republic Vietnam No. 11/2017/QD-TTg (dated 11.04.2017).
14. Decision of the Prime Minister of the Socialist Republic Vietnam No. 13/2020/QD-TTg (dated 06.04.2020).
15. Do T.N. et al. Vietnam’s Solar and Wind Power Success: Policy Implications for the Other ASEAN Countries. – Energy for Sustainable Development, 2021, vol. 65, pp. 1–11, DOI: 10.1016/J.ESD.2021.09.002.
16. Alexander K. et al. Large-Scale Integration of Renewable Power Sources into the Vietnamese Power System. – Energy Procedia, 2017, vol. 125, pp. 207-213, DOI: 10.1016/j.egypro.2017.08.188.
17. Viet D.T. et al. A Cost-Optimal Pathway to Integrate Renewable Energy into the Future Vietnamese Power System. – 4th International Conference on Green Technology and Sustainable Development (GTSD), 2018, DOI: 10.1109/GTSD.2018.8595637
18. Favuzza S. et al. Impact of RES Penetration on the Frequency Dynamics of the 500 kV Vietnamese Power System. – 8th International Conference on Renewable Energy Research and Applications (ICRERA), 2019, DOI: 10.1109/ICRERA47325.2019.8996862.
19. Nguyen T.N.H., Vittal V. Impact of High WPPs Penetration on Vietnam Power System. – 12th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology (ECTI-CON), 2015, DOI: 10.1109/ECTICon.2015.7206941.
20. Duong M.Q. et al. The Impact of 150MWp PhoAn Solar Photovoltaic Project into Vietnamese QuangNgai – Grid. – International Conference and Exposition on Electrical and Power Engineering, 2018, DOI: 10.1109/ICEPE.2018.8559768.
21. Van-Tan T., Cao T.L. Impact of Planned Solar Farms on the Power Transmission Systems in Hau Giang Province, Vietnam. – Journal of Solar Energy Research, 2021, 6(3), pp. 829–837, DOI: 10.22059/jser.2021.325243.1207.
22. Ngo M.K., Nguyen T.H.V., Le K.H., Doan A.T. Investigation of the Impact of Large-Scale Wind Power and Solar Power Plants on a Vietnamese Transmission Network. – International Journal of Renewable Energy Development, 2022, 11(3), pp. 863–870, DOI:10.14710/ijred.2022.43879.
23. Диспетчерский центр национальной энергосистемы Вьетнама (A0). Отчет о работе за 2020 г.
24. Электроэнергетика Вьетнама (EVN). Годовой отчет за 2020 г. Выходные данные.
25. Overview of Vietnam's power system [Электрон. ресурс], URL: https://nangluongvietnam.vn/duong-day-500kv-mach-3-ky-1-tong-quan-he-thong-dien-viet-nam-22731.html (дата обращения 12.09.2024).
26. Минпромторг. Институт энергетики. Национальный план развития электроэнергетики на период 2021–2030 гг. с перспективой до 2045 г. (Генеральный план энергетики VIII), Ханой, 2021.
27. PSS/E Program Application Guide: Volume 2. New York, U.S.A.: Siemens Power Technologies International, 2013, 698 p.
28. WECC Solar Plant Dynamic Modeling Guidelines [Электрон. ресурс], URL: https://www.wecc.org/sites/default/files/documents/pro-gram/2024/WECC%20Solar%20Plant%20Dynamic%20Modeling%20Guidelines.pdf (дата обращения 12.09.2024).
29. Circular of the Minister of Industry and Trade of the Socialist Republic Vietnam No. 30/2019/TT-BCT (dated 18.11.2019).
#
1. Katiraei F., Agüero J.R. Solar PV Integration Challenges. – IEEE Power and Energy Magazine, 2011, 9(3), pp. 62–71, DOI: 10. 1109/MPE.2011.940579.
2. Eftekharnejad S. et al. Impact of Increased Penetration of Photovoltaic Generation on Power Systems. – IEEE Transactions on Power Systems, 2013, 28(2), pp. 893–901, DOI: 10.1109/TPWRS.2012.2216294.
3. Bueno P.G., Hernández J.C., Ruiz-Rodriguez F.J. Stability Assessment for Transmission Systems with Large Utility-Scale Photovoltaic Units. – IET Renewable Power Generation, 2016, 10(5), pp. 584–597, DOI: 10.1049/iet-rpg.2015.0331.
4. Yagami M. et al. Power System Transient Stability Analysis in the Case of High-Penetration Photovoltaics. – IEEE Grenoble Conference PowerTech, 2013, DOI: 10.1109/PTC.2013.6652139.
5. Tamimi B., Cañizares C., Bhattacharya K. System Stability Impact of Large-Scale and Distributed Solar Photovoltaic Generation: The Case of Ontario, Canada. – IEEE Transactions on Sustainable Energy, 2013, 4(3), pp. 680–688, DOI: 10.1109/TSTE.2012.2235151.
6. Till A., You S., Liu Y. Impact of High PV Penetration on Transient Stability — a Case Study on the U.S. ERCOT System. – Renewable Energy and Power Quality Journal, 2020, 18(3), DOI: 10.24084/repqj18.325.
7. Tran-Quoc T. et al. Improvement of Voltage Stability on the Vietnam Power System. – IEEE Power Engineering Society Winter Meeting, 2000, DOI: 10.1109/PESW.2000.850204.
8. Tran-Quoc T. et al. Stability Study for the Vietnam Power System. – IEEE PES Transmission and Distribution Conference and Exposition, 2003, DOI: 10.1109/TDC.2003.1335366.
9. Lerch E. et al. Enhancing the Stability of Vietnamese Power System – From Theory to Practical. – International Electrical Engineering Congress, 2017, DOI: 10.1109/IEECON.2017.8075795.
10. Sanseverino R.E. et al. Review of Potential and Actual Penetration of Solar Power in Vietnam. – Energies, 2020, vol. 13, DOI:10.3390/en13102529.
11. Lee N. et al. Exploring Renewable Energy Opportunities in select Southeast Asian Countries: A Geospatial Analysis of the Levelized Cost of Energy of Utility-Scale Wind and Solar Photovoltaics, 2019, DOI:10.2172/1527336.
12. Decision of the Prime Minister of the Socialist Republic Vietnam No. 2068/QD-TTG (dated 25.11.2015).
13. Decision of the Prime Minister of the Socialist Republic Vietnam No. 11/2017/QD-TTg (dated 11.04.2017).
14. Decision of the Prime Minister of the Socialist Republic Vietnam No. 13/2020/QD-TTg (dated 06.04.2020).
15. Do T.N. et al. Vietnam’s Solar and Wind Power Success: Policy Implications for the Other ASEAN Countries. – Energy for Sustainable Development, 2021, vol. 65, pp. 1–11, DOI: 10.1016/J.ESD.2021.09.002.
16. Alexander K. et al. Large-Scale Integration of Renewable Power Sources into the Vietnamese Power System. – Energy Procedia, 2017, vol. 125, pp. 207-213, DOI: 10.1016/j.egypro.2017.08.188.
17. Viet D.T. et al. A Cost-Optimal Pathway to Integrate Renewable Energy into the Future Vietnamese Power System. – 4th International Conference on Green Technology and Sustainable Development (GTSD), 2018, DOI: 10.1109/GTSD.2018.8595637
18. Favuzza S. et al. Impact of RES Penetration on the Frequency Dynamics of the 500 kV Vietnamese Power System. – 8th International Conference on Renewable Energy Research and Applications (ICRERA), 2019, DOI: 10.1109/ICRERA47325.2019.8996862.
19. Nguyen T.N.H., Vittal V. Impact of High WPPs Penetration on Vietnam Power System. – 12th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology (ECTI-CON), 2015, DOI: 10.1109/ECTICon.2015.7206941.
20. Duong M.Q. et al. The Impact of 150MWp PhoAn Solar Photovoltaic Project into Vietnamese QuangNgai – Grid. – International Conference and Exposition on Electrical and Power Engineering, 2018, DOI: 10.1109/ICEPE.2018.8559768.
21. Van-Tan T., Cao T.L. Impact of Planned Solar Farms on the Power Transmission Systems in Hau Giang Province, Vietnam. – Journal of Solar Energy Research, 2021, 6(3), pp. 829–837, DOI: 10.22059/jser.2021.325243.1207.
22. Ngo M.K., Nguyen T.H.V., Le K.H., Doan A.T. Investigation of the Impact of Large-Scale Wind Power and Solar Power Plants on a Vietnamese Transmission Network. – International Journal of Renewable Energy Development, 2022, 11(3), pp. 863–870, DOI:10.14710/ijred.2022.43879.
23. Dispetcherskiy tsentr natsional'noy energosistemy V'etnama (A0). Otchet o rabote za 2020 g. (The Dispatch Center of the National Grid of Vietnam (A0). Work Report for 2020).
24. Elektroenergetika V'etnama (EVN). Godovoy otchet za 2020 g. Vyhodnye dannye (Vietnam's Electric Power Industry (EVN). Annual Report for 2020. Output Data).
25. Overview of Vietnam's power system [Electron. resource], URL: https://nangluongvietnam.vn/duong-day-500kv-mach-3-ky-1-tong-quan-he-thong-dien-viet-nam-22731.html (дата обращения 12.09.2024).
26. Minpromtorg. Institut energetiki. Natsional'nyy plan razvitiya elektroenergetiki na period 2021–2030 gg. s perspektivoy do 2045 g. (General'nyy plan energetiki VIII) (Ministry of Industry and Trade. Institute of Energy. National Plan for the Development of the Electric Power Industry for the Period 2021-2030 with a Perspective Until 2045. (Energy Master Plan VIII), Hanoy, 2021.
27. PSS/E Program Application Guide: Volume 2. New York, U.S.A.: Siemens Power Technologies International, 2013, 698 p.
28. WECC Solar Plant Dynamic Modeling Guidelines [Electron. resource], URL: https://www.wecc.org/sites/default/files/documents/program/2024/WECC%20Solar%20Plant%20Dynamic%20Modeling%20Guidelines.pdf (дата обращения 12.09.2024).
29. Circular of the Minister of Industry and Trade of the Socialist Republic Vietnam No. 30/2019/TT-BCT (dated 18.11.2019)
Published
2024-10-31
Section
Article