Development of Impulse Arc Discharge in a SparkIgnited Vacuum Diode

  • Sergey G. DAVYDOV
  • Alexander N. DOLGOV
  • Andrey V. KORNEYEV
  • Alexander A. PSHENICHNY
  • Rustam Kh. YAKUBOV
Keywords: vacuum diode, discharge, dielectric, Langmuir probe

Abstract

In a number of technology fields (devices for lighting fast processes with Xray impulses, neutron logging equipment), the heavy current electronic devices of which must comply with certain key requirements such as lack of incandescent circuits, compact sizes, wide range of switched currents, and stability to external impacts, compact vacuum switches are used, which are sometimes called in the literature as vacuum diodes. The insulating vacuum gap in such devices is closed by injecting a plasma bunch into it. As is well known, the plasma propagation velocity under such conditions depends of the electric field direction in the switched gap. The simplest apparatus among electric discharge switching devices, which therefore can be made with the most compact sizes, is the one in which breakdown is initiated, followed by spark discharge over the dielectric surface, as a result of which plasma from the dielectric surface is injected into the vacuum gap. It is shown that conducting medium is generated in rarefied gas through photoionization, and the breakdown current over the dielectric surface is produced by the flow of electrons emitted from the cathode spot. The transition of discharge to the arc stage in the switched vacuum gap is preceded by escape of electrons from the plasma jet produced on the cathode, emission of ions, and ambipolar drift of plasma to the anode.

Author Biographies

Sergey G. DAVYDOV

DAVYDOV Sergey G. (AllRussian Research Institute of Automation named N.L. Dukhov (ARRIA), Moscow,
Russia) – Scientist

Alexander N. DOLGOV

DOLGOV Alexander N. (ARRIA, Moscow, Russia) – Leading Scientist, Dr. Sci. (Phys.Math.)

Andrey V. KORNEYEV

KORNEYEV Andrey V. (ARRIA, Moscow, Russia)–Scientist

Alexander A. PSHENICHNY

PSHENICHNY Alexander A. (ARRIA, Moscow, Russia) – Engineer of 1th Category.

Rustam Kh. YAKUBOV

YAKUBOV Rustam Kh. (ARRIA, Moscow, Russia) – Chief of Research Department, Cand. Sci. (Eng.)

References

Давыдов С.Г., Долгов А.Н., Козловская Т.И., Ревазов О.В., Селезнев В.П., Якубов Р.Х. Процесс коммутации вакуумного электроразрядного промежутка лазерной плазмой. – При кладная физика, 2014, № 6, с. 32–35.

Дулатов А.К., Лемешко Б.Д., Михайлов Ю.В., Прокуратов И.А., Селифанов А.Н. Генерация жесткого ренгеновского излучения электронным пучком в установках плазменного фокуса. – Физика плазмы, 2014, т. 40, № 11, с. 1016–1024.

Месяц Г.А. Эктоны в вакуумном разряде: пробой, искра, дуга. М.: Наука, 2000, 424 с. 4. Сливков И.Н. Электроизоляция и разряд в вакууме. М.: Атомиздат, 1972, 304 с.

Лозанский Э.Д., Фирсов О.Б. Теория искры. М.: Атомиз дат, 1975, 272 с. 6. Блонский И.В., Данько А.Я., Кадан В.Н., Орешко Е.В., Пузиков В.М.

Влияние поперечного размера факела лазерно-индуцированной плазмы на процесс обработки материалов. – ЖТФ, 2005, т. 75, вып. 3, с. 74–80.

Арифов Т.У., Аскарьян Г.А., Тарасова Н.М. Ионизующее действие излучения от нагрева вещества в фокусе луча лазера и получение плазмы с высокой степенью ионизации. – Письма в ЖЭТФ, 1968, т. 8, вып. 2, с. 128.

Таблицы физических величин: Справочник/Под ред. И.К. Кикоина. М.: Атомиздат,1976, 1008 с. 9. Бабичев А.П., Бабушкина Н.А., Братковский А.М. и др. Физические величины: Справочник/Под ред. И.С. Григорьева, Е.С. Мелихова. М.: Энергоатомиздат, 1991, 1232 с.

Козлов О.В. Электрический зонд в плазме. М.: Атомиз дат, 1969, 291 с. 11. Ершов А.П. Метод электрических зондов Ленгмюра. М.: МГУ, 2007, 26 с. 12. Чан П., Талб от Л., Турьян К. Электрические зонды в не подвижной и движущейся плазме. М.: Мир, 1978, 202 с.

Nold B., Ribeiro T.T., RamischM., Huang Z., Muller H.W., Scott B.D., Stroth U. Influence of temperature fluctuations on plasma turbulence investigations with Langmuir probes. – New Journal of Physics, 2012, vol. 14, 13 p.
#
Davydov S.G., Dolgov A.N., Kozlovskaya T.I., Revazov O.V., Seleznev V.P., Yakubov R.Kh. Prikladnay fisika – in Russ. (Applied physics), 2014, No. 6, pp. 32–35.

Dulatov A.K., Lemeshko B.D., Mikhailov Yu.V., Prokuratov I.A., Selifanov A.N. Fizika plazmy – in Russ. (Physics of plasma), 2014, vol. 40, No. 11, pp. 1016–1024.

Mesyats G.A. Ektony v vakuumnom razryade: proboi, iskra, duga (Ectons in vacuum digit: hasp, spark, arc). Moscow, Nauka, 2000, 424 p.

Slivkov I.N. Elektroizolyatsiya i razryad v vakuume (Electroizolation and discharge in a vacuum). Moscow, Atomizdat, 1972, 304 p.

Lozanskii E.D., Firsov O.B. Teoriya iskry (Theory of spark). Moscow, Atomizdat, 1975, 272 p.

Blonsky I.V., Dan’ko A.Ya., Kadan V.N., Oreshko Ye.V., Puzikov V.M. Zhurnal tekhnicheskoi fiziki – in Russ. (Technical Physics Journal), 2005, vol. 75, iss. 3, pp. 74–80.

Arifov T.U., Askar'yan G.A., Tarasova N.M. Pis’ma v zhurnal eksperimental’noi i teoreticheskoi fiziki – in Russ. (Letters to the Journal of Experimental and Teoretical Physics), 1968, vol. 8, iss. 2, p. 128.

Tablitsy fizicheskikh velichin. Spravochnik/Pod red. I.K. Kikoina (Tables of physical sizes. Reference book/Edit. by I.K.Kikoin). Moscow, Atomizdat, 1976, 1008 p.

Babichev A.P., Babushkina N.A., Bratkovskiy A.M. et al. Fizicheskiye velichiny: Spravochnik/Pod red. I.S. Grigor’yeva, Ye.S. Melikhova (Physical sizes. Reference book/Edit. by I.S. Grigor’yev, Ye.S. Melikhov). Moscow, Energoatomizdat, 1991, 1232 p.

Kozlov O.V. Elektricheskii zond v plazme (An electric probe is in plasma). Moscow, Atomizdat, 1969, 291 p.

Yershov A.P. Metod elektricheskikh zondov Lengmyura (Method of electric probes of Langmuir). Moscow, Moscow State University, 2007, 26 c.

Chan P., Talbot L., Tur’yan K. Elektricheskiye zondy v nepodvizhnoi i dvizhushcheisya plazme (Electrical probes are in immobile and locomotive plazma). Moscow, Mir, 1978, 202 p.

Nold B., Ribeiro T.T., RamischM., Huang Z., Muller H.W., Scott B.D., Stroth U. Influence of temperature fluctuations on plasma turbulence investigations with Langmuir probes. – New Journal of Physics, 2012, vol. 14, 13 p.
Published
2019-08-15
Section
Article