Multifunctional Digital Current Protection of 6–35 kV Distribution Networks
Abstract
In Russia, modernization of both 6-35 kV distribution networks and their automatic control and relay protection devices is underway. The most widely used types of protections in these networks are current protections. Although having certain shortcomings, they will nevertheless be used also in advanced active-adaptive electric networks owing to their low cost and high efficiency. The existing algorithms implemented on microprocessor devices still repeat in many respects the principles of electromechanical protections, a circumstance that limits the potential of their technical capabilities. Matters of improving current protection effectiveness by using digital information processing methods and simulation modeling are of relevance. In doing so, the most important task is to preserve their main advantages over other types of protections, such as simplicity and low cost. A current protection implementation version is proposed, which is based on statistical principles. The proposed method implies the use of not only the effective phase currents values, as a conventional current protection, but also other network operating parameters. The results of comparing the efficiency of the proposed algorithm with classical current protection are presented.
References
2. Правила устройства электроустановок. М.: Моркнига, 2024, 584 с.
3. Концепция развития релейной защиты, автоматики и автоматизированных систем управления технологическими процессами электросетевого комплекса группы компании «РОССЕТИ». М.: ПАО «Россети», 2022.
4. Концепция «Цифровая трансформация 2030». М.: ПАО «Россети», 2018.
5. Вуколов В.Ю. и др. Выбор очередности реконструкции устройств релейной защиты подстанций по статистическим критериям теории игр. – Электричество, 2021, № 5, с. 26–32.
6. Fishov A.G. Synchronization of the Parts of Electrical Networks with Distributed Energy Sources After Emergency or Accident-Prevention Separation. – Power Technology and Engineering, 2023, vol. 57, No. 1, pp. 136–144, DOI 10.1007/s10749-023-01634-5.
7. Yang Z. et al. Review on Optimal Planning of New Power Systems with Distributed Generations and Electric Vehicles. – Energy Reports, 2023, vol. 9, pp. 501–509, DOI: 10.1016/j.egyr.2022.11.168.
8. Вергазов С.Ю., Кириленков В.С. О текущем состоянии и планах развития РЗА в ДЗО ПАО «Россети». – Релейная защита и автоматизация, 2017, № 2 (27), с. 62–65.
9. Шарыгин М.В., Куликов А.Л. Защита и автоматика систем электроснабжения с активными промышленными потребителями. Н. Новгород: НИУ РАНХиГС, 2017, 284 с.
10. Fikri M., El-Sayed M. New Algorithm for Distance Protection of High Voltage Transmission Lines. – IEE Proc., 1988, vol. 135, No. 5, pp. 436–440, DOI: 10.1049/ip-c.1988.0056.
11. Лямец Ю.Я. Модификации аварийных составляющих наблюдаемых токов и напряжений. – Электротехника, 2015, № 2, с. 22–28.
12. Куликов А.Л. и др. Применение метода наложения для решения задачи определения места повреждения в сетях среднего напряжения. – Электричество, 2021, № 9, с. 38–44.
13. Колобанов П.А., Куликов А.Л., Обалин М.Д. Повышение точности одностороннего определения места повреждения в электрической сети произвольной конфигурации. – Электричество, 2019, № 4, с. 19–31.
14. Куликов А.Л., Илюшин П.В., Лоскутов А.А. Применение алгоритмов поиска при определении мест повреждений на воздушных линиях электропередачи по параметрам аварийного режима. – Известия Российской академии наук. Энергетика, 2023, № 5, с. 40–59.
15. Мартынов М.В. и др. Защита дальнего резервирования маломощных ответвительных подстанций. – Релейщик, 2020, № 1(36), с. 14–18.
16. Nobakhti S.M., Ketabi A.A. Protection Scheme Based on Impedance for LV and MV Lines in Microgrids with High-Impedance Fault Detection Capability. – Frontiers in Energy Research, 2023, vol. 11, DOI: 10.3389/fenrg.2023.1125861.
17. Романов Л.Р., Шарыгин М.В. Способы улучшения эффективности цифровых токовых защит в распределительных сетях 6–35 кВ. – Актуальные проблемы электроэнергетики, 2023, с. 288–293.
18. Yang Z. et al. Fault Coordination Control for Converter-Interfaced Sources Compatible with Distance Protection during Asymmetrical Faults. – IEEE Transactions on Industrial Electronics, 2022, 70(7), pp. 6941–6952, DOI:10.1109/TIE.2022.3204946.
19. Нагай В.И., Нагай И.В., Сарры С.В. Возможности повышения технического совершенства системы дальнего резервирования релейной защиты трансформаторов ответвительных подстанций при симметричных КЗ. – Релейщик, 2020, № 1(36), с. 10–13.
20. Лямец Ю.Я. и др. Об информационной теории релейной защиты. – Известия Академии электротехнических наук РФ, 2009, № 1, с. 32–44.
21. Лямец Ю.Я. и др. Эффекты многомерности в релейной защите. – Электричество, 2011, № 9, с. 48–54.
22. Нагай И.В., Нагай В.И. Построение многопараметрических резервных защит электрических распределительных сетей 6–10 кВ. – Энергетик, 2013, № 2, с. 18–21.
23. Шарыгин М.В., Куликов АЛ., Петров А.А. Синтез универсального многомерного измерительно-пускового органа релейной защиты. – Электричество, 2020, № 1, с. 4–11.
24. Sharygin M.V. et al. Prospective Relay Protection System for Digital Distribution Networks. – Power Technology and Engineering, 2022, 56(4), pp. 597–602, DOI: 10.1007/s10749-023-01559-z.
#
1. Shneerson E.М. Tsifrovaya releynaya zashchita (Digital Relay Protection). M: Energoatomizdat, 2007, 548 p.
2. Pravila ustroystva elektroustanovok (Electrical Installation Regulations). M.: Morkniga, 2024, 584 p.
3. Kontseptsiya razvitiya releynoy zashchity, avtomatiki i avto-matizirovannyh sistem upravleniya tekhnologicheskimi protsessami elektrosetevogo kompleksa gruppy kompanii «ROSSETI» (The Concept of Development of Relay Protection, Automation and Automated Process Control Systems of the Electric Grid Complex of the ROSSETI Group). М.: PАО «Rosseti», 2022, 41 p.
4. Kontseptsiya «Tsifrovaya transformatsiya 2030» (The Concept of "Digital Transformation 2030"). М.: PАО «Rosseti», 2018.
5. Vukolov V.Yu. et al. Elektrichestvo – in Russ. (Electricity), 2021, No. 5, pp. 26–32.
6. Fishov A.G. Synchronization of the Parts of Electrical Networks with Distributed Energy Sources After Emergency or Accident-Prevention Separation. – Power Technology and Engineering, 2023, vol. 57, No. 1, pp. 136–144, DOI 10.1007/s10749-023-01634-5.
7. Yang Z. et al. Review on Optimal Planning of New Power Systems with Distributed Generations and Electric Vehicles. – Energy Reports, 2023, vol. 9, pp. 501–509, DOI: 10.1016/j.egyr.2022.11.168.
8. Vergazov S.Yu., Kirilenkov V.S. Releynaya zashchita i avtomatizatsiya – in Russ. (Relay Protection and Automation), 2017, No. 2(27), pp. 62–65.
9. Sharygin M.V., Kulikov A.L. Zashchita i avtomatika sistem ehlektrosnabzheniya s aktivnymi promyshlennymi potrebitelyami. (Protection and Automation of Power Supply Systems with Active Industrial Consumers). Nizhniy Novgorod: NIU RANHiGS, 2017, 284 p.
10. Fikri M., El-Sayed M. New Algorithm for Distance Protection of High Voltage Transmission Lines. – IEE Proc., 1988, vol. 135, No. 5, pp. 436–440, DOI: 10.1049/ip-c.1988.0056.
11. Lyamets Yu.Ya. Ehlektrotekhnika – in Russ. (Electrical Engineering), 2015, No. 2, pp. 22–28.
12. Kulikov A.L. et al. Elektrichestvo – in Russ. (Electricity), 2021, No. 9, pp. 38–44.
13. Kolobanov P.A., Kulikov A.L., Obalin M.D. Elektrichestvo – in Russ. (Electricity), 2019, No. 4, pp. 19–31.
14. Kulikov A.L., Ilyushin P.V., Loskutov А.А. Izvestiya RAS. Energetika – in Russ. (News of the Russian Academy of Sciences. Power Engineering), 2023, No. 5, pp. 40–59.
15. Martynov M.V. et al. Releyshchik – in Russ. (Relay Worker), 2020, No. 1(36), pp. 14–18.
16. Nobakhti S.M., Ketabi A.A. Protection Scheme Based on Impedance for LV and MV Lines in Microgrids with High-Impedance Fault Detection Capability. – Frontiers in Energy Research, 2023, vol. 11, DOI: 10.3389/fenrg.2023.1125861.
17. Romanov L.R., Sharygin M.V. Aktual'nye problemy elektro-energetiki – in Russ. (Actual Problems of the Electric Power Industry), 2023, pp. 288–293.
18. Yang Z. et al. Fault Coordination Control for Converter-Interfaced Sources Compatible with Distance Protection during Asymmetrical Faults. – IEEE Transactions on Industrial Electronics, 2022, 70(7), pp. 6941–6952, DOI:10.1109/TIE.2022.3204946.
19. Nagay V.I., Nagay I.V., Sarry S.V. Relejshchik – in Russ. (Relay Worker), 2020, No. 1(36), pp. 10–13.
20. Lyamets Yu.Ya. et al. Izvestiya Akademii elektrotekhnicheskih nauk RF – in Russ. (News of the Academy of Electrotechnical Sciences of the Russian Federation), 2009, No. 1, pp. 32–44.
21. Lyamets Yu.Ya. et al. Elektrichestvo – in Russ. (Electricity), 2011, No. 9, pp. 48–54.
22. Nagay I.V., Nagay V.I. Energetik – in Russ. (Power Engineer), 2013, No. 2, pp. 18–21.
23. Sharygin M.V., Kulikov A.L., Petrov А.А. Elektrichestvo – in Russ. (Electricity), 2020, No. 1, pp. 4–11.
24. Sharygin M.V. et al. Prospective Relay Protection System for Digital Distribution Networks. – Power Technology and Engineering, 2022, 56(4), pp. 597–602, DOI: 10.1007/s10749-023-01559-z