Mechanisms Causing the Occurrence of Subsynchronous Oscillations in Power Systems Containing Power Inverters: Part 1

  • Aleksey A. SUVOROV
Keywords: grid-tied inverter, subsynchronous oscillations, stability, automatic control system, renewable energy sources

Abstract

Modern power systems are undergoing changes as a result of wide-scale introduction of power inverters. The unique properties of such devices alter the dynamics of power systems and give rise to new processes. One of them is a phenomenon accompanied by the occurrence of a wide range of subsynchronous oscillations associated with the response of the applied grid inverter control system in rotating dq coordinates to various grid operation and circuit conditions. Given the existing gaps in understanding the mechanisms causing the occurrence of subsynchronous oscillations due to various combinations of the controllers used in the grid-tied inverter control system and the grid parameters, the first part of the article addresses the development of simplified mathematical models of the grid-tied inverter with various degrees of detail. The models reflecting the influence on subsynchronous oscillations of various external controllers, phase-locked loop, and their response to variations in the grid density, the level of grid inverter loading by active power, and voltage at the connection point are considered in a sequence. A frequency analysis is performed for the obtained models, the results of which made it possible to reveal different mechanisms causing the occurrence of subsynchronous oscillations, as well as influencing factors. For each mechanism causing the occurrence of subsynchronous oscillations, the necessary degree of detail in the used mathematical model is justified.

Author Biography

Aleksey A. SUVOROV

(Tomsk Polytechnic University, Tomsk, Russia) – Docent of the Division for Power and Electrical Engineering, School of Energy and Power Engineering, Cand. Sci. (Eng.), Docent.

References

1. Илюшин П.В., Георгиевский И.Д. Обзор возможностей для увеличения доли ветровых и солнечных электростанций в структуре генерирующих мощностей энергосистем. – Энергетик, 2023, № 5, с. 13–18.
2. Рубан Н.Ю. и др. Анализ влияния возобновляемых источников энергии с силовыми преобразователями на процессы в современных энергосистемах. – Вестник ПНИПУ. Электротехника, информационные технологии, системы управления, 2020, № 36, с. 7–30.
3. Cheng Y. et al. Real-World Subsynchronous Oscillation Events in Power Grids With High Penetrations of Inverter-Based Resources. – IEEE Transactions on Power Systems, 2023, 38(1), pp. 316–30, DOI: 10.1109/TPWRS.2022.3161418.
4. Xie X., Shair J. Introduction to Power System Oscillatory Stability. – Oscillatory Stability of Converter-Dominated Power Systems. Power Systems. Springer, Cham, 2024, DOI: 10.1007/978-3-031-53357-0_1.
5. Shair J. et al. Overview of Emerging Subsynchronous Oscillations in Practical Wind Power Systems. – Renewable and Sustainable Energy Reviews, 2019, vol. 99, pp. 159–168, DOI: 10.1016/j.rser.2018.09.047.
6. Xie X. et al. Guest Editorial: Control Interactions in Power Electronic Converter Dominated Power Systems. – International Journal of Electrical Power & Energy Systems, 2024, vol. 155, DOI: 10.1016/j.ijepes.2023.109553.
7. Суворов А.А. и др. Управление сетевым инвертором на основе виртуального синхронного генератора при изменении плотности электрической сети. – Электричество, 2023, № 3, с. 35–51.
8. Fan L. et al. Real-World 20-Hz IBR Subsynchronous Oscillations: Signatures and Mechanism Analysis. – IEEE Transactions on Energy Conversion, 2022, vol. 37(4), pp. 2863–2873, DOI: 10.1109/TEC.2022.3206795.
9. Zhou J.Z. et al. Impact of Short-Circuit Ratio and Phase-Locked-Loop Parameters on the Small-Signal Behavior of a VSC-HVDC Converter. – IEEE Transactions on Power Delivery, 2014, vol. 29, No. 5, pp. 2287–2296, DOI: 10.1109/TPWRD.2014.2330518.
10. Zhao M. et al. Voltage Dynamics of Current Control Time-Scale in A VSC-Connected Weak Grid. – IEEE Transactions on Power Systems, 2016, vol. 31, No. 4, pp. 2925–2937, DOI: 10.1109/TPWRS.2015.2482605.
11. Strachan N.P., Jovcic D. Stability of a Variable-Speed Permanent Magnet Wind Generator with Weak AC Grids. – IEEE Transactions on Power Delivery, 2010, 25(4), pp. 2779–2788, DOI: 10.1109/TPWRD.2010.2053723.
12. Zhou Y. et al. Connecting Wind Power Plant with Weak Grid-Challenges and Solutions. – 2013 IEEE Power & Energy Society General Meeting, 2013, DOI: 10.1109/PESMG.2013.6672755.
13. Hu J. et al. Small Signal Instability of PLL-Synchronized Type-4 Wind Turbines Connected to High-Impedance AC Grid During LVRT. – IEEE Transactions on Energy Conversion, 2016, vol. 31, No. 4, pp. 1676–1687, DOI: 10.1109/TEC.2016.2577606.
14. Булатов Ю.Н. и др. Регулирование напряжения в микросети постоянного и переменного тока на базе энергороутеров и накопителей электроэнергии. – Интеллектуальная электротехника, 2023, № 1 (21), c. 62–84.
15. Huang S.-H. et al. Voltage Control Challenges on Weak Grids with High Penetration of Wind Generation: ERCOT Experience. – 2012 IEEE Power and Energy Society General Meeting, 2012, DOI: 10.1109/PESGM.2012.6344713.
16. Bao L. et al. Hardware Demonstration of Weak Grid Oscillations in Grid-Following Converters. – 2021 North American Power Symposium (NAPS), 2021, DOI: 10.1109/NAPS52732.2021.9654557.
17. Papangelis L. et al. Stability of a Voltage Source Converter Subject to Decrease of Short-Circuit Capacity: A Case Study. – Power Systems Computation Conference (PSCC), 2018, DOI: 10.23919/PSCC.2018.8442773.
18. Fan L. Modeling Type-4 Wind in Weak Grids. – IEEE Transactions on Sustainable Energy, 2019, vol. 10, No. 2, pp. 853–864, DOI: 10.1109/TSTE.2018.2849849.
19. Alawasa K.M. et al. Modeling, Analysis, and Suppression of The Impact of Full-Scale Wind-Power Converters on Subsynchronous Damping. – IEEE Systems Journal, 2013, vol. 7, No. 4, pp. 700–712, DOI: 10.1109/JSYST.2012.2226615.
20. Liu H. et al. Subsynchronous Interaction Between Direct-Drive PMSG Based Wind Farms and Weak AC Networks. – IEEE Transactions on Power Systems, 2017, 32(6), pp. 4708–4720, DOI: 10.1109/TPWRS.2017.2682197.
21. Li Y. et al. Wind in Weak Grids: Low-Frequency Oscillations, Subsynchronous Oscillations, and Torsional Interactions. – IEEE Transactions on Power Systems, 2020, vol. 35, No. 1, pp. 109–118, DOI: 10.1109/TPWRS.2019.2924412.
22. Dong D. et al. Analysis of Phase-Locked Loop Low-Frequency Stability in Three-Phase Grid-Connected Power Converters Considering Impedance Interactions. – IEEE Transactions on Industrial Electronics, 2015, vol. 62, No. 1, pp. 310–321, DOI: 10.1109/TIE.2014.2334665.
23. Li G. et al. PLL Phase Margin Design and Analysis for Mitigating Sub/Super-Synchronous Oscillation of Grid-Connected Inverter Under Weak Grid. – International Journal of Electrical Power & Energy Systems, 2023, vol. 151, DOI: 10.1016/j.ijepes.2023.109124.
24. Li G. et al. A Double-Loop Inertia Phase-Locked Loop with Antidisturbance Ability. – IEEE Transactions on Industrial Informatics, 2023, vol. 19, No. 4, pp. 5585–5592. DOI: 10.1109/TII.2022.3189014.
25. Liu H. et al. Stability Analysis of SSR in Multiple Wind Farms Connected to Series-Compensated Systems Using Impedance Network Model. – IEEE Transactions on Power Systems, 2018, vol. 33, No. 3, pp. 3118–3128, DOI: 10.1109/TPWRS.2017.2764159.
26. Liu H., Xie X. Comparative Studies on the Impedance Models of VSC-Based Renewable Generators for SSI Stability Analysis. – IEEE Transactions on Energy Conversion, 2019, vol. 34, No. 3, pp. 1442–1453, DOI: 10.1109/TEC.2019.2913778.
27. Fan L., Miao Z. Admittance-Based Stability Analysis: Bode Plots, Nyquist Diagrams or Eigenvalue Analysis. – IEEE Transactions on Power Systems, 2020, vol. 35, No. 4, pp. 3312–3315, DOI: 10.1109/TPWRS.2020.2996014.
28. Bi T. et al. Study on Response Characteristics of Grid-Side Inverter Controller of PMSG to Sub-Synchronous Frequency Component. – IET Renewable Power Generation, 2017, vol. 11, No. 7, pp. 966–972, DOI: 10.1049/iet-rpg.2016.0994.
29. Суворов А.А. и др. Синтез и тестирование типовых структур систем автоматического управления на основе виртуального синхронного генератора для генерирующих установок с силовым преобразователем. – Электрические станции, 2022, № 3 (1088), c. 43–57.
30. Wu B. et al. Power Conversion and Control of Wind Energy Systems. Hoboken, U.S.A.: John Wiley & Sons, 2011, 480 p.
31. Blaabjerg F. et al. Overview of Control and Grid Synchronization for Distributed Power Generation Systems. – IEEE Transactions on Industrial Electronics, 2006, vol. 53, No. 5, pp. 1398–1409, DOI: 10.1109/TIE.2006.881997.
32. Ali Z. et al. Three-Phase Phase-Locked Loop Synchronization Algorithms for Grid-Connected Renewable Energy Systems: A Review. – Renewable and Sustainable Energy Reviews, 2018, vol. 90, 434–452, DOI: 10.1016/j.rser.2018.03.086.
33. Симонов А.В., Илюшин П.В. О совершенствовании методических подходов к математическому моделированию ветроэнергетических установок в отечественных программных комплексах АРМ СРЗА и RASTRKZ. – Релейная защита и автоматизация, 2024, № 1 (54), с. 60–65.
34. Yazdani A., Iravani R. Voltage-Sourced Converters in Power Systems: Modeling, Control, and Applications. Hoboken, U.S.A.: John Wiley & Sons, 2010, 541 p.
35. Попов Е.П. Теория линейных систем автоматического регулирования и управления. М.: Наука, 1989, с. 304.
36. Fan L. Control and Dynamics in Power Systems and Microgrids. Boca Raton, U.S.A.: CRC Press, 2017, 230 p.
37. Wen B. et al. Analysis of D-Q Small-Signal Impedance of Grid-Tied Inverters. – IEEE Transactions on Power Electronics, 2016, vol. 31, No. 1, pp. 675–687, DOI: 10.1109/TPEL.2015.2398192.
---
Исследование выполнено за счет гранта Российского научного фонда № 24-29-00004.
#
1. Ilyushin P.V., Georgievskiy I.D. Energetik – in Russ. (Power Engineer), 2023, No. 5, pp. 13–18.
2. Ruban N.Yu. et al. Vestnik PNIPU. Elektrotehnika, informatsionnye tehnologii, sistemy upravleniya – in Russ. (Bulletin of PNRPU. Electrical Engineering, Information Technology, Control Systems), 2020, No. 36, pp. 7–30.
3. Cheng Y. et al. Real-World Subsynchronous Oscillation Events in Power Grids with High Penetrations of Inverter-Based Resources. – IEEE Transactions on Power Systems, 2023, 38(1), pp. 316–30, DOI: 10.1109/TPWRS.2022.3161418.
4. Xie X., Shair J. Introduction to Power System Oscillatory Stability. – Oscillatory Stability of Converter-Dominated Power Systems. Power Systems. Springer, Cham, 2024, DOI: 10.1007/978-3-031-53357-0_1.
5. Shair J. et al. Overview of Emerging Subsynchronous Oscillations in Practical Wind Power Systems. – Renewable and Sustainable Energy Reviews, 2019, vol. 99, pp. 159–168, DOI: 10.1016/j.rser.2018.09.047.
6. Xie X. et al. Guest Editorial: Control Interactions in Power Electronic Converter Dominated Power Systems. – International Journal of Electrical Power & Energy Systems, 2024, vol. 155, DOI: 10.1016/j.ijepes.2023.109553
7. Suvorov A.A. et al. Elektrichestvo – in Russ. (Electricity), 2023, No. 3, pp. 35–51.
8. Fan L. et al. Real-World 20-Hz IBR Subsynchronous Oscillations: Signatures and Mechanism Analysis. – IEEE Transactions on Energy Conversion, 2022, vol. 37(4), pp. 2863–2873, DOI: 10.1109/TEC.2022.3206795.
9. Zhou J.Z. et al. Impact of Short-Circuit Ratio and Phase-Locked-Loop Parameters on the Small-Signal Behavior of a VSC-HVDC Converter. – IEEE Transactions on Power Delivery, 2014, vol. 29, No. 5, pp. 2287–2296, DOI: 10.1109/TPWRD.2014.2330518.
10. Zhao M. et al. Voltage Dynamics of Current Control Time-Scale in A VSC-Connected Weak Grid. – IEEE Transactions on Power Systems, 2016, vol. 31, No. 4, pp. 2925–2937, DOI: 10.1109/TPWRS.2015.2482605.
11. Strachan N.P., Jovcic D. Stability of a Variable-Speed Permanent Magnet Wind Generator with Weak AC Grids. – IEEE Transactions on Power Delivery, 2010, vol. 25, No. 4, pp. 2779–2788, DOI: 10.1109/TPWRD.2010.2053723.
12. Zhou Y. et al. Connecting Wind Power Plant with Weak Grid-Challenges and Solutions. – 2013 IEEE Power & Energy Society General Meeting, 2013, DOI: 10.1109/PESMG.2013.6672755.
13. Hu J. et al. Small Signal Instability of PLL-Synchronized Type-4 Wind Turbines Connected to High-Impedance AC Grid During LVRT. – IEEE Transactions on Energy Conversion, 2016, vol. 31, No. 4, pp. 1676–1687, DOI: 10.1109/TEC.2016.2577606.
14. Bulatov Yu.N. et al. Intellektual’naya elektrotehnika – in Russ. (Smart Electrical Engineering), 2023, No. 1 (21), pp. 62–84.
15. Huang S.-H. et al. Voltage Control Challenges on Weak Grids with High Penetration of Wind Generation: ERCOT Experience. – 2012 IEEE Power and Energy Society General Meeting, 2012, DOI: 10.1109/PESGM.2012.6344713.
16. Bao L. et al. Hardware Demonstration of Weak Grid Oscillations in Grid-Following Converters. – 2021 North American Power Symposium (NAPS), 2021, DOI: 10.1109/NAPS52732.2021.9654557.
17. Papangelis L. et al. Stability of a Voltage Source Converter Subject to Decrease of Short-Circuit Capacity: A Case Study. – Power Systems Computation Conference (PSCC), 2018, DOI: 10.23919/PSCC.2018.8442773.
18. Fan L. Modeling Type-4 Wind in Weak Grids. – IEEE Transactions on Sustainable Energy, 2019, vol. 10, No. 2, pp. 853–864, DOI: 10.1109/TSTE.2018.2849849.
19. Alawasa K.M. et al. Modeling, Analysis, and Suppression of The Impact of Full-Scale Wind-Power Converters on Subsynchronous Damping. – IEEE Systems Journal, 2013, vol. 7, No. 4, pp. 700–712, DOI: 10.1109/JSYST.2012.2226615.
20. Liu H. et al. Subsynchronous Interaction Between Direct-Drive PMSG Based Wind Farms and Weak AC Networks. – IEEE Transactions on Power Systems, 2017, vol. 32, No. 6, pp. 4708–4720, DOI: 10.1109/TPWRS.2017.2682197.
21. Li Y. et al. Wind in Weak Grids: Low-Frequency Oscillations, Subsynchronous Oscillations, and Torsional Interactions. – IEEE Transactions on Power Systems, 2020, vol. 35, No. 1, pp. 109–118, DOI: 10.1109/TPWRS.2019.2924412.
22. Dong D. et al. Analysis of Phase-Locked Loop Low-Frequency Stability in Three-Phase Grid-Connected Power Converters Considering Impedance Interactions. – IEEE Transactions on Industrial Electronics, 2015, vol. 62, No. 1, pp. 310–321, DOI: 10.1109/TIE.2014.2334665.
23. Li G. et al. PLL Phase Margin Design and Analysis for Mitigating Sub/Super-Synchronous Oscillation of Grid-Connected Inverter Under Weak Grid. – International Journal of Electrical Power & Energy Systems, 2023, vol. 151, DOI: 10.1016/j.ijepes.2023.109124.
24. Li G. et al. A Double-Loop Inertia Phase-Locked Loop with Antidisturbance Ability. – IEEE Transactions on Industrial Informatics, 2023, vol. 19, No. 4, pp. 5585–5592. DOI: 10.1109/TII.2022.3189014.
25. Liu H. et al. Stability Analysis of SSR in Multiple Wind Farms Connected to Series-Compensated Systems Using Impedance Network Model. – IEEE Transactions on Power Systems, 2018, vol. 33, No. 3, pp. 3118–3128, DOI: 10.1109/TPWRS.2017.2764159.
26. Liu H., Xie X. Comparative Studies on the Impedance Models of VSC-Based Renewable Generators for SSI Stability Analysis. – IEEE Transactions on Energy Conversion, 2019, vol. 34, No. 3, pp. 1442–1453, DOI: 10.1109/TEC.2019.2913778.
27. Fan L., Miao Z. Admittance-Based Stability Analysis: Bode Plots, Nyquist Diagrams or Eigenvalue Analysis. – IEEE Transactions on Power Systems, 2020, vol. 35, No. 4, pp. 3312–3315, DOI: 10.1109/TPWRS.2020.2996014.
28. Bi T. et al. Study on Response Characteristics of Grid-Side Inverter Controller of PMSG to Sub-Synchronous Frequency Component. – IET Renewable Power Generation, 2017, vol. 11, No. 7, pp. 966–972, DOI: 10.1049/iet-rpg.2016.0994.
29. Suvorov A.A. et al. Elektricheskie stantsii – in Russ. (Electrical Power Plants), 2022, No. 3 (1088), pp. 43–57.
30. Wu B. et al. Power Conversion and Control of Wind Energy Systems. Hoboken, U.S.A.: John Wiley & Sons, 2011, 480 p.
31. Blaabjerg F. et al. Overview of Control and Grid Synchronization for Distributed Power Generation Systems. – IEEE Transactions on Industrial Electronics, 2006, vol. 53, No. 5, pp. 1398–1409, DOI: 10.1109/TIE.2006.881997.
32. Ali Z. et al. Three-Phase Phase-Locked Loop Synchronization Algorithms for Grid-Connected Renewable Energy Systems: A Review. – Renewable and Sustainable Energy Reviews, 2018, vol. 90, 434–452, DOI: 10.1016/j.rser.2018.03.086.
33. Simonov A.V., Ilyushin P.V. Releynaya zashchita i avtomatizatsiya – in Russ. (Relay Protection and Automation), 2024, No. 1 (54), pp. 60–65.
34. Yazdani A., Iravani R. Voltage-Sourced Converters in Power Systems: Modeling, Control, and Applications. Hoboken, U.S.A.: John Wiley & Sons, 2010, 541 p.
35. Popov E.P. Teoriya lineynykh sistem avtomaticheskogo regulirovaniya i upravleniya (Theory of Linear Systems of Automatic Regulation and Control). M.: Nauka, 1989, 304 p.
36. Fan L. Control and Dynamics in Power Systems and Microgrids. Boca Raton, U.S.A.: CRC Press, 2017, 230 p.
37. Wen B. et al. Analysis of D-Q Small-Signal Impedance of Grid-Tied Inverters. – IEEE Transactions on Power Electronics, 2016, vol. 31, No. 1, pp. 675–687, DOI: 10.1109/TPEL.2015.2398192
---
The study was financially supported by the Russian Science Foundation, grant no. 24-29-00004
Published
2024-11-28
Section
Article