Induction Heating Features in Electrical Steel Hot Rolling Mills

  • Viktor B. DEMIDOVICH
Keywords: induction heating, computer simulation, electrical steel hot rolling, rolling mill, computational experiment, digital twin

Abstract

Induction heaters in steel hot rolling mills can be used most efficiently in combination with gas furnaces. Such approach is economically profitable; it reduces the cost of metal heating with a significant reduction in scaling and decarburization, improves the gas furnace servicing conditions, and reduces carbon emissions. At the same time, induction heaters have proven themselves as effective inertia-free temperature controllers in conventional steel hot rolling lines, ensuring better quality of rolled products and creating prerequisites for the development of new technologies for producing electrical steel in these mills. The three previously formulated tasks of rolled strip heating before the finishing stands, namely, raising the average temperature, heating the edges, and eliminating the temperature difference along the strip length, are solved by using various types of inductors with their being appropriately placed on the mill to ensure maximum quality of rolled products with minimal costs for mill refurbishment. When implementing a set of works on modernizing a rolling mill, it is necessary to use digital twins of induction heaters during their design, control, operation and integration into the overall mill control system.

Author Biography

Viktor B. DEMIDOVICH

(LLC "Russian Induction Heating Technologies", St. Petersburg, Russia) – Chief Research Officer, Dr. Sci. (Eng.), Professor.

References

1. The International Energy Agency [Электрон. ресурс], URL: https://www.iea.org/ (дата обращения 11.10.2024).
2. Ross N.V. A System for Induction Heating of Large Steel Slabs. – IEEE Transactions on Industry and General Applications, 1970, vol.6, pp. 449–454, DOI: 10.1109/TIGA.1970.4181214.
3. Ross N.V. Megawatt Induction Heating for Rolling, Forging and Extrusion. – World Electrotechnical Congress (WELC), 1977, 65.
4. Бааке Э., Йорн У., Мюльбауэр А. Энергопотребление и эмиссия СО2 при промышленном технологическом нагреве. Essen: Vulkan, 1997, 173 c.
5. Chen D.M. et al. Fuel Gas Operation Management Practices for Reheating Furnace in Iron and Steel Industry. – Advances in Production Engineering & Management, 2020, vol. 15 (2), pp. 179–191, DOI: 10.14743/apem2020.2.357.
6. Lu B. et al. A Novelty Data Mining Approach for Multi-Influence Factors on Billet Gas Consumption in Reheating Furnace. – Case Studies in Thermal Engineering, 2021, vol. 26, DOI: 10.1016/j.csite.2021.101080.
7. Ke H.L. et al. Research and Application of Slab Heating Curve in Reheating Furnace. – Metal Industry Automation, 2014, vol. 38 (3), pp. 50–55.
8. Schmitz N. et al. Towards CO2-Neutral Process Heat Generation for Continuous Reheating Furnaces in Steel Hot Rolling Mills – A Case Study. – Energy, 2021, vol. 224, DOI: 10.1016/j.energy.2021.120155.
9. Hu R., Zhang Q. Study of a Low-Carbon Production Strategy in the Metallurgical Industry in China. – Energy, 2015, vol. 90, pp. 1456–1467, DOI: 10.1016/j.energy.2021.120155.
10. Демидович В.Б., Иванов В.Н., Червинский В.И. Актуальные энергосберегающие технологии индукционного нагрева в металлургии. – Металлургические процессы и оборудование, 2008, № 4, c. 5–12.
11. Baake E. Future Potentials and Challenges for Decarbonization of Industrial Heating Processes Using Electrotechnologies. – International Conference on Heating by Electromagnetic Sources (HES-23), Padua (Italia), 2023.
12. Baake E. Energy Efficient Use of Electricity in Metallurgical Processes. – XXIV International UIE Congress on Electricity Applications in Modern World (EAMW´08), Kraków (Poland), 2008.
13. Демидович В.Б. Бестигельная плавка титана в переменном электромагнитном поле. – Электричество, 2023, № 10, с. 57–63.
14. Демидович В.Б., Чмиленко Ф.В. Компьютерное моделирование устройств индукционного нагрева. СПб: Изд-во СПбГЭТУ «ЛЭТИ», 2013, 160 с.
15. Кононов А.А., Матвеев М.А. Формирование структуры при горячей прокатке электротехнической анизотропной стали. – Научно-технические ведомости СПбПУ. Естественные и инженерные науки, 2018, т. 24, № 1, с. 104–112.
16. Передовые производственные технологии: возможности для России. Экспертно-аналитический доклад / под ред. А.И. Боровкова. СПб.: ПОЛИТЕХ-ПРЕСС, 2020, 436 с.
17. Rudskoy A.I., Kolbasnikov N.G. Digital Twins of Processes of Thermomechanical Treatment of Steel. – Metal Science and Heat Treatment, 2020, vol 62, pp. 3–10, DOI: 10.1007/s11041-020-00505-4.
18. Negri E., Fumagalli L, Macchi M. A Review of the Roles of DT in CPS-Based Production Systems. – Procedia Manufacturing, 2017, vol. 11, pp. 939–948, DOI: 10.1016/j.promfg.2017.07.198.
19. Бутырин П.А., Алпатов М.Е. Цифровизация и аналитика в электротехнике. Цифровые двойники трансформаторов. – Электричество, 2021, № 10, с. 4–10.
20. Демидович В.Б. Цифровые двойники процессов индукционного нагрева в металлургической промышленности. – Электричество, 2023, № 4, с. 55–60.
#
1. The International Energy Agency [Electron. resource], URL: https://www.iea.org/ (Date of appeal 11.10.2024).
2. Ross N.V. A System for Induction Heating of Large Steel Slabs. – IEEE Transactions on Industry and General Applications, 1970, vol.6, pp. 449–454, DOI: 10.1109/TIGA.1970.4181214.
3. Ross N.V. Megawatt Induction Heating for Rolling, Forging and Extrusion. – World Electrotechnical Congress (WELC), 1977, 65.
4. Baake E., Yorn U., Myul’bauer А. Energopotreblenie i emissiya СО2 pri promyshlennom tekhnologicheskom nagreve (Energy Con-sumption and CO2 Emissions from Industrial Process Heating). Essen: Vulkan, 1997, 173 p.
5. Chen D.M. et al. Fuel Gas Operation Management Practices for Reheating Furnace in Iron and Steel Industry. – Advances in Production Engineering & Management, 2020, vol. 15 (2), pp. 179–191, DOI: 10.14743/apem2020.2.357.
6. Lu B. et al. A Novelty Data Mining Approach for Multi-Influence Factors on Billet Gas Consumption in Reheating Furnace. – Case Studies in Thermal Engineering, 2021, vol. 26, DOI: 10.1016/j.csite.2021.101080.
7. Ke H.L. et al. Research and Application of Slab Heating Curve in Reheating Furnace. – Metal Industry Automation, 2014, vol. 38 (3), pp. 50–55.
8. Schmitz N. et al. Towards CO2-Neutral Process Heat Generation for Continuous Reheating Furnaces in Steel Hot Rolling Mills – A Case Study. – Energy, 2021, vol. 224, DOI: 10.1016/j.energy.2021.120155.
9. Hu R., Zhang Q. Study of a Low-Carbon Production Strategy in the Metallurgical Industry in China. – Energy, 2015, vol. 90, pp. 1456–1467, DOI: 10.1016/j.energy.2021.120155.
10. Demidovich V.B., Ivanov V.N., Chervinskiy V.I. Metallurgi-cheskie protsessy i oborudovanie – in Russ. (Metallurgical Processes and Equipment), 2008, No. 4, pp. 5–12.
11. Baake E. Future Potentials and Challenges for Decarbonization of Industrial Heating Processes Using Electrotechnologies. – Inter-national Conference on Heating by Electromagnetic Sources (HES-23), Padua (Italia), 2023.
12. Baake E. Energy Efficient Use of Electricity in Metallurgical Processes. – XXIV International UIE Congress on Electricity Applications in Modern World (EAMW´08), Kraków (Poland), 2008.
13. Demidovich V.B. Elektrichestvo – in Russ. (Electricity), 2023, No. 10, pp. 57–63.
14. Demidovich V.B., Chmilenko F.V. Komp'yuternoe modelirovanie ustroystv induktsionnogo nagreva (Computer Simulation of Induction Heating Devices). SPb: Izd-vo SPbGETU «LETI», 2013, 160 p.
15. Kononov A.A., Matveev M.A. Nauchno-tehnicheskie vedomosti SPbPU. Estestvennye i inzhenernye nauki – in Russ. (Scientific and Technical Bulletins of SPbPU. Natural and Engineering Sciences), 2018, vol. 24, No. 1, pp. 104–112.
16. Peredovye proizvodstvennye tehnologii: vozmozhnosti dlya Rossii. Ekspertno-analiticheskiy doklad (Advanced Manufacturing Technologies: Opportunities for Russia. Expert Analytical Report) / Ed. by A.I. Borovkov. SPb.: POLITEKH-PRESS, 2020, 436 p.
17. Rudskoy A.I., Kolbasnikov N.G. Digital Twins of Processes of Thermomechanical Treatment of Steel. – Metal Science and Heat Treatment, 2020, vol 62, pp. 3–10, DOI: 10.1007/s11041-020-00505-4.
18. Negri E., Fumagalli L, Macchi M. A Review of the Roles of DT in CPS-Based Production Systems. – Procedia Manufacturing, 2017, vol. 11, pp. 939–948, DOI: 10.1016/j.promfg.2017.07.198.
19. Butyrin P.A., Alpatov M.E. Elektrichestvo – in Russ. (Electricity), 2021, No. 10, pp. 4–10.
20. Demidovich V.B. Elektrichestvo – in Russ. (Electricity), 2023, No. 4, pp. 55–60
Published
2024-11-28
Section
Article