Simulation of a Plasma Jet Power Supply with Feedback
Abstract
A sinusoidal high-voltage high-frequency (20 kHz) power supply is simulated in the Matlab environment. In the power supply model developed, the principle of constructing the control system feedback signal from the load represented by the plasma jet equivalent circuit is proposed. The power supply main functional units are presented, including a rectifier with a filter, a step-down converter, an inverter, and a step-up transformer. To obtain better simulation quality, the characteristics of the chokes and the step-up transformer were refined on the mockups of these components. The feedback signal pickup points (the charge transferred to the nozzle wall) and the control signal application points (the controller and the step-down converter) are selected. The possibility of influencing the load through the obtained control channel is shown; the response time to the model disturbance was found to be 17 ms. The control system functional diagram demonstrates the possibility of regulating the plasma jet operation mode by using the charge transferred to the nozzle wall as the feedback signal. The control is performed by adjusting the voltage applied to the inverter-transformer-gas discharge system. The proposed model can be applied in constructing devices that use a plasma jet as an actuator, and also in designing high-voltage power supplies.
References
2. Bagheri M. et al. Can Cold Atmospheric Plasma Be Used for Infection Control in Burns? A Preclinical Evaluation. – Biomedicines, 2023, 11(5), DOI:10.3390/biomedicines11051239.
3. Sakudo A., Yagyu Y. Plasma Biology. – International Journal of Molecular Sciences, 2021, 22(11), DOI: 10.3390/ijms22115441.
4. Ermakov A.M. et al. Synergistic Antimicrobial Effect of Cold Atmospheric Plasma and Redox-Active Nanoparticles. – Biomedicines, 2023, 11(10), DOI: 10.3390/biomedicines11102780.
5. Teschke M. et al. High-Speed Photographs of a Dielectric Barrier Atmospheric Pressure Plasma Jet. – IEEE Transactions on Plasma Science, 2005, vol. 33, pp. 310–311, DOI: 10.1109/TPS.2005.845377.
6. Pinchuk M.E. et al. Stepwise Propagation of a Guided Streamer Along a DBD Helium Plasma Jet Fed by Biased Oscillating Voltage. – Applied Physics Letters, 2019, vol. 114, DOI: 10.1063/1.5099968.
7. Akishev Y.S. et al. How Ionization Waves (Plasma Bullets) in Helium Plasma Jet Interact with a Dielectric and Metallic Substrate. – Journal of Physics: Conference Series, 2017, DOI: 10.1088/1742-6596/927/1/012040.
8. Pinchuk M.E. et al. Propagation of Atmospheric Pressure Helium Plasma Jet into Ambient Air at Laminar Gas Flow. – Journal of Physics: Conference Series, 2017, vol. 755, DOI:10.1088/1742-6596/ 755/1/011001.
9. Brandenburg R., Becker K.H., Weltmann K.-D. Barrier Discharges in Science and Technology Since 2003: A Tribute and Update. – Plasma Chemistry and Plasma Processing, 2023, vol. 43, pp. 1303–1334 DOI: 10.1007/s11090-023-10364-5.
10. Viegas P. et al. Physics of Plasma Jets and Interaction with Surfaces: Review on Modelling and Experiments. – Plasma Sources Science and Technology, 2022, vol. 31, DOI: 10.1088/1361-6595/ac61a9.
11. Пинчук М.Э., Степанова О.М. Формирование аргоновой плазменной струи при питании пакетами биполярных высоковольтных импульсов напряжения. – Письма в Журнал технической физики, 2024, т. 50, № 8, с. 29–32.
12. Дьяченко А.А., Пинчук М.Э. Автоматизированная система для сканирования пространственной структуры плазменной струи методом оптической эмиссионной спектроскопии. – Инновационное приборостроение, 2024, т. 3, № 1, c. 56–62.
13. Акишев Ю.С. и др. Влияние барьерного разряда на газодинамические параметры формируемой им плазменной струи. – Прикладная физика, 2018, № 6, с. 14–19.
14. Bastin O. et al. Electrical Equivalent Model of a Long Dielectric Barrier Discharge Plasma Jet for Endoscopy. – Journal of Physics D: Applied Physics, 2023, vol. 56, DOI: 10.1088/1361-6463/acb603.
15. Матвеев Д.А., Фролов М.В., Хренов С.И. Опытный образец высокочастотного агрегата питания электрофильтров. – Электротехника, 2023, № 8, с. 43–49.
16. Лысов Н.Ю. Оптимизация параметров резонансного источника высокого напряжения для питания генератора озона на поверхностном барьерном разряде. – Электричество, 2016, № 10, с. 28–35.
17. Шершунова Е.А., Мошкунов С.И. Устройство для формирования холодных аргоновых плазменных струй в воздухе. – Сборник докладов XII Международной научной конференции «Современные проблемы электрофизики и электрогидродинамики», 2019, с. 66–69.
18. Жуйков А.В. и др. Широкополосная модель повышающего трансформатора в составе высокочастотного агрегата питания электрофильтров. – Электротехника, 2021, № 4, с. 22–30.
---
Работа выполнена при поддержке Российского научного фонда по проекту 23-29-00265.
#
1. Braný D. et al. Cold Atmospheric Plasma: A Powerful Tool for Modern Medicine. – International Journal of Molecular Sciences, 2020, 21(8), DOI: 10.3390/ijms21082932.
2. Bagheri M. et al. Can Cold Atmospheric Plasma Be Used for Infection Control in Burns? A Preclinical Evaluation. – Biomedicines, 2023, 11(5), DOI:10.3390/biomedicines11051239.
3. Sakudo A., Yagyu Y. Plasma Biology. – International Journal of Molecular Sciences, 2021, 22(11), DOI: 10.3390/ijms22115441.
4. Ermakov A.M. et al. Synergistic Antimicrobial Effect of Cold Atmospheric Plasma and Redox-Active Nanoparticles. – Biomedicines, 2023, 11(10), DOI: 10.3390/biomedicines11102780.
5. Teschke M. et al. High-Speed Photographs of a Dielectric Barrier Atmospheric Pressure Plasma Jet. – IEEE Transactions on Plasma Science, 2005, vol. 33, pp. 310–311, DOI: 10.1109/TPS.2005.845377.
6. Pinchuk M.E. et al. Stepwise Propagation of a Guided Streamer Along a DBD Helium Plasma Jet Fed by Biased Oscillating Voltage. – Applied Physics Letters, 2019, vol. 114, DOI: 10.1063/1.5099968.
7. Akishev Y.S. et al. How Ionization Waves (Plasma Bullets) in Helium Plasma Jet Interact with a Dielectric and Metallic Substrate. – Journal of Physics: Conference Series, 2017, DOI: 10.1088/1742-6596/927/1/012040.
8. Pinchuk M.E. et al. Propagation of Atmospheric Pressure Helium Plasma Jet into Ambient Air at Laminar Gas Flow. – Journal of Physics: Conference Series, 2017, vol. 755, DOI:10.1088/1742-6596/755/1/011001.
9. Brandenburg R., Becker K.H., Weltmann K.-D. Barrier Discharges in Science and Technology Since 2003: A Tribute and Update. – Plasma Chemistry and Plasma Processing, 2023, vol. 43, pp. 1303–1334 DOI: 10.1007/s11090-023-10364-5.
10. Viegas P. et al. Physics of Plasma Jets and Interaction with Surfaces: Review on Modelling and Experiments. – Plasma Sources Science and Technology, 2022, vol. 31, DOI: 10.1088/1361-6595/ac61a9.
11. Pinchuk M.E., Stepanova O.M. Pis’ma v Zhurnal tehniches-koy fiziki – in Russ. (Journal of Technical Physics Letters), 2024, vol. 50, No. 8, pp. 29–32.
12. D’yachenko A.A., Pinchuk M.E. Innovatsionnoe priboro-stroenie – in Russ. (Innovative Instrumentation), 2024, vol. 3, No. 1, pp. 56–62.
13. Akishev Yu.S. et al. Prikladnaya fizika – in Russ. (Applied Physics), 2018, No. 6, pp. 14–19.
14. Bastin O. et al. Electrical Equivalent Model of a Long Dielectric Barrier Discharge Plasma Jet for Endoscopy. – Journal of Physics D: Applied Physics, 2023, vol. 56, DOI: 10.1088/1361-6463/acb603.
15. Matveev D.A., Frolov M.V., Hrenov S.I. Elektrotekhnika – in Russ. (Electrical Engineering), 2023, No. 8, pp. 43–49.
16. Lysov N.Yu. Elektrichestvo – in Russ. (Electricity), 2016, No. 10, pp. 28–35.
17. Shershunova E.A., Moshkunov S.I. Sbornik dokladov XII Mezhdunarodnoy nauchnoy konferentsii «Sovremennye problemy elektrofiziki i elektrogidrodinamiki» – in Russ. (Proceedings of XII International Conference on Modern Problems of Electrophysics and Electrohydrodynamics), 2019, pp. 66–69.
18. Zhuykov A.V. et al. Elektrotekhnika – in Russ. (Electrical Engineering), 2021, No. 4, pp. 22–30
---
The research was financially supported by the Russian Science Foundation, project no. 23-29-00265