Mechanisms Causing the Occurrence of Subsynchronous Oscillations in Power Systems Containing Power Inverters: Part 2
Abstract
Power semiconductor devices are increasingly more widely used in electric power systems as grid-tied inverters for renewable energy sources, interface elements for heterogeneous objects in microgrids, etc. On the one hand, the controllability of semiconductor devices makes it possible to impart more flexibility to modern power systems. But on the other hand, the use of these devices gives rise to processes and modes that have not existed previously, and which entail fundamental changes in the dynamic properties of power systems. One of such changes is the occurrence of subsynchronous oscillations associated with the mutual influence of the grid-tied inverter control system and the power grid operating and circuit conditions. The first part of the article [1] analyzes various stages of simplifying the grid-tied inverter mathematical model, which made it possible to determine unambiguously the mechanisms causing the occurrence of subsynchronous oscillations. In the second part of the article, a detailed state-space model is developed, using which it is possible to verify the results obtained from the simplified models and identify additional mechanisms causing the occurrence of subsynchronous oscillations. The results of simulation in the time domain and testing in a closed loop on the example of an industrial microcontroller have confirmed the conclusions drawn. As a result, the classification of the mechanisms causing the occurrence of subsynchronous oscillations has been formed, which reflects their causes and distinctive features.
References
2. Xu Y. et al. Small-Signal Stability Analysis of Type-4 Wind in Series-Compensated Networks. – IEEE Transactions on Energy Conversion, 2020, vol. 35, No. 1, pp. 529–538, DOI: 10.1109/TEC. 2019.2943578.
3. Суворов А.А. и др. Управление сетевым инвертором на основе виртуального синхронного генератора при изменении плотности электрической сети. – Электричество, 2023, № 3, с. 35–51.
4. Аскаров А.Б. и др. Улучшение демпфирующих свойств виртуального синхронного генератора с помощью корректирующего согласно-параллельного регулятора. – Электричество, 2024, № 1, с. 18–36.
5. Климова Т.Г., Ревякин В.А. Субсинхронные и суперсинхронные колебания в электроэнергетической системе: возникновение и идентификация, обзор. – Энергетик, 2022, № 5, с. 27–32.
6. Chi Y. и др. Исследование проблемы колебаний и методов их демпфирования при интеграции крупной ветровой генерации в энергосеть небольшой мощности. – Релейщик, 2020, № 2 (37), с. 30–35.
7. Li Y., Fan L., Miao Z. Wind in Weak Grids: Low-Frequency Oscillations, Subsynchronous Oscillations, and Torsional Interactions. – IEEE Transactions on Power Systems, 2020, vol. 35, No. 1, pp. 109–118, DOI: 10.1109/TPWRS.2019.2924412.
8. Huang L. et al. Impact of Grid Strength and Impedance Characteristics on the Maximum Power Transfer Capability of Grid-Connected Inverters. – Applied Sciences, 2021, vol. 11, No. 9, DOI: 10.3390/app11094288.
9. Михайлов Д.О., Шескин Е.Б. Исследование закономерностей изменения режимных параметров синхронного генератора в близких к границе области колебательной устойчивости режимах. – Известия НТЦ Единой энергетической системы, 2022, № 1 (86), с. 50–62.
10. Ali Z. et al. Three-Phase Phase-Locked Loop Synchronization Algorithms for Grid-Connected Renewable Energy Systems: A Review. – Renewable and Sustainable Energy Reviews, 2018, vol. 90, pp. 434–452, DOI: 10.1016/j.rser.2018.03.086.
11. Булатов Ю.Н., Крюков А.В., Черепанов А.В. Математические модели для определения предельных режимов в электрических сетях с установками распределенной генерации. – Научный вестник НГТУ, 2020, № 4 (80), с. 17–36.
12. Li G. et al. PLL Phase Margin Design and Analysis for Mitigating Sub/Super-Synchronous Oscillation of Grid-Connected Inverter under Weak Grid. – International Journal of Electrical Power and Energy Systems, 2023, vol. 151, DOI: 10.1016/j.ijepes.2023.109124.
13. Ghasemi M.A. et al. A Theoretical Concept of Decoupled Current Control Scheme for Grid-Connected Inverter with L-C-L Filter. – Applied Sciences, 2021, vol. 11, No. 14, DOI: 10.3390/app11146256.
14. Cheng Y. et al. Real-World Subsynchronous Oscillation Events in Power Grids with High Penetrations of Inverter-Based Resources. – IEEE Transaction on Power Systems, 2023, vol. 38, No. 1, pp. 316–330, DOI: 10.1109/TPWRS.2022.3161418.
15. Salehi F. et al. Sub-Synchronous Control Interaction Detection: a Real-Time Application. – IEEE Transaction on Power Delivery, 2020, vol. 35, No. 1, pp. 106–116, DOI: 10.1109/TPWRD.2019.2930400.
---
Исследование выполнено за счет гранта Российского научного фонда № 24-29-00004.
#
1. SUVOROV A.A. Elektrichestvo – in Russ. (Electricity), 2025, No. 1, pp. 17–31.
2. Xu Y. et al. Small-Signal Stability Analysis of Type-4 Wind in Series-Compensated Networks. – IEEE Transactions on Energy Conversion, 2020, vol. 35, No. 1, pp. 529–538, DOI: 10.1109/TEC. 2019.2943578.
3. Suvorov A.A. et al. Elektrichestvo – in Russ. (Electricity), 2023, No. 3, pp. 35–51.
4. Askarov A.B. et al. Elektrichestvo – in Russ. (Electricity), 2024, No. 1, pp. 18–36.
5. Klimova T.G., Revyakin V.A. Energetik – in Russ. (Power Engineer), 2022, No. 5, pp. 27–32.
6. Chi Y. et al. Releyshchik – in Russ. (Relay Worker), 2020, No. 2 (37), pp. 30–35.
7. Li Y., Fan L., Miao Z. Wind in Weak Grids: Low-Frequency Oscillations, Subsynchronous Oscillations, and Torsional Interactions. – IEEE Transactions on Power Systems, 2020, vol. 35, No. 1, pp. 109–118, DOI: 10.1109/TPWRS.2019.2924412.
8. Huang L. et al. Impact of Grid Strength and Impedance Characteristics on the Maximum Power Transfer Capability of Grid-Connected Inverters. – Applied Sciences, 2021, vol. 11, No. 9, DOI: 10.3390/app11094288.
9. Mihaylov D.O., Sheskin E.B. Izvestiya NTTS Edinoy energeticheskoy sistemy – in Russ. (Proceedings of the Scientific and Technical Center of the Unified Energy System), 2022, No. 1 (86), pp. 50–62.
10. Ali Z. et al. Three-Phase Phase-Locked Loop Synchronization Algorithms for Grid-Connected Renewable Energy Systems: A Review. – Renewable and Sustainable Energy Reviews, 2018, vol. 90, pp. 434–452, DOI: 10.1016/j.rser.2018.03.086.
11. Bulatov Yu.N., Kryukov A.V., Cherepanov A.V. Nauchnyy vestnik NGTU – in Russ. (Scientific Bulletin of NSTU), 2020, No. 4 (80), pp. 17–36.
12. Li G. et al. PLL Phase Margin Design and Analysis for Mitigating Sub/Super-Synchronous Oscillation of Grid-Connected Inverter under Weak Grid. – International Journal of Electrical Power and Energy Systems, 2023, vol. 151, DOI: 10.1016/j.ijepes.2023.109124.
13. Ghasemi M.A. et al. A Theoretical Concept of Decoupled Current Control Scheme for Grid-Connected Inverter with L-C-L Filter. – Applied Sciences, 2021, vol. 11, No. 14, DOI: 10.3390/app11146256.
14. Cheng Y. et al. Real-World Subsynchronous Oscillation Events in Power Grids with High Penetrations of Inverter-Based Resources. – IEEE Transaction on Power Systems, 2023, vol. 38, No. 1, pp. 316–330, DOI: 10.1109/TPWRS.2022.3161418.
15. Salehi F. et al. Sub-Synchronous Control Interaction Detection: a Real-Time Application. – IEEE Transaction on Power Delivery, 2020, vol. 35, No. 1, pp. 106–116, DOI: 10.1109/TPWRD.2019.2930400
---
The study was financially supported by the Russian Science Foundation, grant no. 24-29-00004