Experience Gained from Using the Frequency Response Analysis in Performing Diagnostic Surveys of 10–500 kV Power Transformers

  • Anisim P. DOLIN
  • Mariya M. KIPRIYANOVA
Keywords: power transformer, deformations, winding, magnetic core, frequency response

Abstract

The article discusses the application of the frequency response analysis for diagnosing various defects in the cores and windings of 10-500 kV power transformers. A schematic approach to defining the dynamic zones of frequency responses is proposed. The optimal measurement configurations are determined. A method for calculating the basic characteristics proceeding from the data of measuring the frequency responses of same-type transformers is developed. Specific examples of determining various defects by analyzing the frequency responses of 10-500 kV transformers are given. The scope of defects diagnosed includes core deformation, radial winding deformation, the presence of short-circuited turns in the winding, and winding displacement from the vertical axis. The obtained results have been confirmed by visual inspection of the active part, as well as by other types of tests and measurements. Various statistical coefficients used for evaluating defects in the transformer active part are compared. Tentative permissible values of the standard deviation coefficient to quantify the severity of defects grown in transformer cores and windings have been proposed.

Author Biographies

Anisim P. DOLIN

(Science and Technology Center “Electrical-Engineering, Diagnostic and Service” – STC “EDS”, Moscow, Russia) – General Director, Cand. Sci. (Eng.).

Mariya M. KIPRIYANOVA

(National Research University "Moscow Power Engineering Institute", Moscow, Russia) – Postgraduate Student of the Electrical Stations Dept.

References

1. ГОСТ Р 59239-2020. Трансформаторы силовые и реакторы. Метод измерения частотных характеристик. М.: Стандартинформ, 2021, 49 с.
2. СТО 34.01-23.1-001-2017. Объем и нормы испытаний электрооборудования. Стандарт организации ПАО «Россети», 2017, 262 с.
3. CIGRE Brochure 812. Advances in the Interpretation of Transformer Frequency Response Analysis (FRA). Working Group A2.53, 2020, 108 p.
4. CIGRE Technical Brochure 342. Mechanical-Condition Assessment of Transformer Windings Using Frequency Response Analysis (FRA). 2008, 67 p.
5. Ларин В.С. и др. Опыт применения метода частотных характеристик для оценки состояния испытательного трансформатора большой мощности. – Электрические станции, 2024, № 2, с. 38–49.
6. IEC 60076-18:2012. Power Transformers – Part 18: Measurement of Frequency Response. 2012, 94 p.
7. C57.149-2012. IEEE Guide for the Application and Interpretation of Frequency Response Analysis for Oil-Immersed Transformers. 2013, 72 р.
8. DL/T 911–2004. Frequency Response Analysis on Winding Deformation of Power Transformers. The Electric Power Industry Standard of People's Republic of China, 2005.
9. Al-Ameri S.M. et al. Interpretation of Frequency Response Analysis for Fault Detection in Power Transformers. – Applied Sciences, 2021, vol. 11, DOI: 10.3390/app11072923.
10. Tahir M., Tenbohlen S. Transformer Winding Condition Assessment Using Feedforward Artificial Neural Network and Frequency Response Measurements. – Energies, 2021, vol. 14, DOI: 10.3390/en14113227.
11. Гмурман В.Е. Теория вероятностей и математическая статистика. М.: Высшая школа, 1999, 479 с.
12. Zhou L. et al. Detection of Transformer Winding Faults Using FRA and Image Features. – IET Electric Power Applications, 2020, vol. 14, pp. 972–980, DOI: 10.1049/iet-epa.2019.0933.
13. Lachman M.F. et al. Frequency Response Analysis of Transformers: Visualizing Physics Behind the Trace. – Proceedings of the Seventy-Eighth Annual International Conference of Doble Clients, 2011, vol. 28.
14. Banaszak S. The Assessment of Mechanical Condition of Transformers’ Active Part with Frequency Response Analysis Method, 2015, 170 p.
15. Al-Ameri S.M. et al. Frequency Response Analysis: An Enabling Technology to Detect Internal Faults within Critical Electric Assets. – Applied Science, 2022, vol. 12, DOI: 10.3390/app12189201.
16. РД (СО) 34.45-51.300-97. Объем и нормы испытания электрооборудования. М.: Издательство НЦ ЭНАС, 2008, 153 с.
17. РД 153-34.0-46.302-00. Методические указания по диагностике развивающихся дефектов трансформаторного оборудования по результатам хроматографического анализа газов, растворенных в масле. 2001, 42 с.
18. Виноградова Л.В. и др. Хроматографический анализ растворенных газов в диагностике трансформаторов. Иваново: Ивановский государственный энергетический ун-т им. В.И. Ленина, 2013, 104 с.
#
1. GOST R 59239-2020. Transformatory silovye i reaktory. Metod izmereniya chastotnyh harakteristik (Power Transformers and Reactors. Method for Frequency Response Measurement). M.: Standartinform, 2021, 49 p.
2. STO 34.01-23.1-001-2017. Ob"em i normy ispytaniy elektro-oborudovaniya. Standart organizatsii PAO «Rosseti» (Scope and Standards of Testing of Electrical Equipment. The Standard of Orga-nization of PJSC ROSSETI), 2017, 262 p.
3. CIGRE Brochure 812. Advances in the Interpretation of Trans-former Frequency Response Analysis (FRA). Working Group A2.53, 2020, 108 p.
4. CIGRE Technical Brochure 342. Mechanical-Condition Asses-sment of Transformer Windings Using Frequency Response Analysis (FRA). 2008, 67 p.
5. Larin V.S. et al. Elektricheskie stantsii – in Russ. (Electrical Power Plants), 2024, No. 2, pp. 38–49.
6. IEC 60076-18:2012. Power Transformers – Part 18: Measurement of Frequency Response. 2012, 94 p.
7. C57.149-2012. IEEE Guide for the Application and Interpretation of Frequency Response Analysis for Oil-Immersed Transformers. 2013, 72 r.
8. DL/T 911–2004. Frequency Response Analysis on Winding Deformation of Power Transformers. The Electric Power Industry Standard of People's Republic of China, 2005.
9. Al-Ameri S.M. et al. Interpretation of Frequency Response Analysis for Fault Detection in Power Transformers. – Applied Sciences, 2021, vol. 11, DOI: 10.3390/app11072923.
10. Tahir M., Tenbohlen S. Transformer Winding Condition Assessment Using Feedforward Artificial Neural Network and Frequency Response Measurements. – Energies, 2021, vol. 14, DOI: 10.3390/en14113227.
11. Gmurman V.E. Teoriya veroyatnostey i matematicheskaya statistika (Probability Theory and Mathematical Statistics). M.: Vysshaya shkola, 1999, 479 p.
12. Zhou L. et al. Detection of Transformer Winding Faults Using FRA and Image Features. – IET Electric Power Applications, 2020, vol. 14, pp. 972–980, DOI: 10.1049/iet-epa.2019.0933.
13. Lachman M.F. et al. Frequency Response Analysis of Transformers: Visualizing Physics Behind the Trace. – Proceedings of the Seventy-Eighth Annual International Conference of Doble Clients, 2011, vol. 28.
14. Banaszak S. The Assessment of Mechanical Condition of Transformers’ Active Part with Frequency Response Analysis Method, 2015, 170 p.
15. Al-Ameri S.M. et al. Frequency Response Analysis: An Enabling Technology to Detect Internal Faults within Critical Electric Assets. – Applied Science, 2022, vol. 12, DOI: 10.3390/app12189201.
16. RD (SO) 34.45-51.300-97. Ob"em i normy ispytaniya elektrooborudovaniya (Scope and Standards of Testing of Electrical Equipment). M.: Izdatel’stvo NTS ENAS, 2008, 153 p.
17. RD 153-34.0-46.302-00. Metodicheskie ukazaniya po diagnostike razvivayushchihsya defektov transformatornogo oboru-dovaniya po rezul’tatam hromatograficheskogo analiza gazov, ras-tvorennyh v masle (Guidelines for the Diagnosis of Developing Defects in Transformer Equipment Based on the Results of Chromatographic Analysis of Gases Dissolved in Oil). 2001, 42 p.
18. Vinogradova L.V. et al. Hromatograficheskiy analiz rastvoren-nyh gazov v diagnostike transformatorov (Chromatographic Analysis of Dissolved Gases in Transformer Diagnostics). Ivanovo: Ivanovskiy gosudarstvennyy energeticheskiy un-t im. V.I. Lenina, 2013, 104 p
Published
2025-01-30
Section
Article