Study of Reliability and Efficiency of Workshop Power Supply System Electrical Apparatuses

  • Almaz R. PETROV
  • Elena I. GRACHEVA
Keywords: low-voltage switching device, workshop network, reliability, correction factor, cost of error, possible damage

Abstract

The effectiveness of low-voltage switching devices installed in the workshop networks of industrial enterprises is studied. To assess the reliability parameters of low-voltage devices, it is proposed to use a statistical method and an analysis of the physical processes occurring in contacts and contact connections. To obtain a more reliable assessment of the device failure rates, it is proposed to use correction factors that take into account the influence of the main factors relating to the electrical equipment operation. The maximum allowable contact heating temperature and the probability of their trouble-free operation are adopted as the apparatus operation effectiveness criteria. The switching device operation quality may degrade during its long-term operation. This may be due to unreliable operation of the apparats itself, as well as possible assembly defects. The average assessment of possible damage makes it possible to determine the costs caused by unreliable operation of the devices and to revise maintenance regulations.

Author Biographies

Almaz R. PETROV

(Kazan State Power Engineering University, Kazan, Russia) – Postgraduate Student of the Electrical Power Supply of Industrial Enterprises Dept.

Elena I. GRACHEVA

(Kazan State Power Engineering University, Kazan, Russia) – Professor of the Electrical Power Supply of Industrial Enterprises Dept., Dr. Sci. (Eng.), Docent.

References

1. Грачева Е.И. и др. Надежность и компоновка низковольтных распределительных устройств внутрицехового электроснабжения. – Вестник Казанского государственного энергетического университета, 2019, т. 11, № 1 (41), с. 3–9.
2. Будко П.А., Голюнов М.В., Аллакин В.В. Повышение надежности средств радиосвязи автоматизированного радиоцентра за счет своевременного обнаружения их параметрических отказов в процессе функционального контроля. – Системы управления, связи и безопасности, 2023, № 2, с. 204–227.
3. Петрова Р.М. и др. Методы оценки надежности схем внутрицехового электроснабжения. – Вестник МГТУ. Труды Мурманского государственного технического университета, 2023, т. 26, № 4, с. 395–409.
4. Воронин А.Е., Пешехонов Н.Е., Рыбаков В.В. К вопросу оценки надежности электроснабжения в структурно-сложных распределительных электрических сетях. – Известия Тульского государственного университета. Технические науки, 2020, № 7, с. 125–133.
5. Виноградов А.В., Перьков Р.А. Анализ повреждаемости электрооборудования электрических сетей и обоснование мероприятий по повышению надежности электроснабжения потребителей. – Вестник НГИЭИ, 2015, № 12 (55), с. 12–21.
6. Гулин С.В., Пиркин А.Г. Комплексный подход к оценке эффективности сложного электротехнологического оборудования на предприятиях АПК. – Известия Санкт-Петербургского государственного аграрного университета, 2022, № 2 (67), с. 145–154.
7. Шпиганович А.Н. и др. Тепловизионный контроль электрооборудования промышленных предприятий. – Известия высших учебных заведений. Проблемы энергетики, 2024, т. 26, № 2, с. 68–77.
8. Шпиганович А.Н., Шпиганович А.А., Зацепин Е.П. К анализу безотказности электрических систем промышленных предприятий. – Известия Тульского государственного университета. Технические науки, 2018, № 12, с. 59–63.
9. Садыков Р.Р. Оценка надежности низковольтных цеховых сетей промышленного электроснабжения. – Известия высших учебных заведений. Проблемы энергетики, 2017, т. 19, № 5–6, с. 98–108.
10. Hasan H., Mozumdar M., Al-Jufout S. Using 0.6 kV/1 kV Low Voltage in Distribution Systems for the Reduction of the Technical and Non-Technical Energy Losses. – 11th International Renewable Energy Congress, 2020, pp. 1–6, DOI: 10.1109/IREC48820.2020.9310417.
11. Zhang W. et al. Reliability Assessment of Medium and Low Voltage Distribution Networks Considering Distributed Energy Sources. – 3rd International Conference on Energy Engineering and Power Systems, 2023, pp. 271–275, DOI: 10.1109/EEPS58791.2023.10257168.
12. Li K. et al. Electrical Performance Degradation Model and Residual Electrical Life Prediction for AC Contactor. – IEEE Transactions on Components, Packaging and Manufacturing Technology, 2020, vol. 10, No. 3, pp. 400–417, DOI: 10.1109/TCPMT.2020.2966516.
13. Kumari S., Kumar-M P., Muralidhar M. Reliability Estimation of Distribution Components-Contactors. – IEEE PES Asia-Pacific Power and Energy Engineering Conference, 2016, pp. 2066–2070, DOI: 10.1109/APPEEC.2016.7779849.
14. Kerckhove S., D’Hulst R., Hertem D.V. Reconfiguration Method for Low Voltage Distribution Networks. – IEEE PES Innovative Smart Grid Technologies Europe, 2023, DOI: 10.1109/ISGTEUROPE56780.2023.10407763.
15. Feng Z. A Study of Reliability of Low and Medium Voltage Distribution Networks Based on Fault Tree Theory. – IEEE 4th International Conference on Electronic Technology, Communication and Information, 2024, pp. 955–960, DOI: 10.1109/ICETCI61221.2024.10594689.
#
1. Gracheva E.I. et al. Vestnik Kazanskogo gosudarstvennogo energeticheskogo universiteta – in Russ. (Bulletin of Kazan State University), 2019, vol. 11, No. 1 (41), pp. 3–9.
2. Budko P.A., Golyunov M.V., Allakin V.V. Sistemy upravleniya, svyazi i bezopasnosti – in Russ. (Systems of Control, Communi-cation and Security), 2023, No. 2, pp. 204–227.
3. Petrova R.M. et al. Vestnik MGTU. Trudy Murmanskogo gosudarstvennogo tehnicheskogo universiteta – in Russ. (Bulletin of the MSTU. Proceedings of the Murmansk State Technical University), 2023, vol. 26, No. 4, pp. 395–409.
4. Voronin A.E., Peshehonov N.E., Rybakov V.V. Izvestiya Tul’skogo gosudarstvennogo universiteta. Tehnicheskie nauki – in Russ. (News of Tula State University. Technical Science), 2020, No. 7, pp. 125–133.
5. Vinogradov A.V., Per’kov R.A. Vestnik NGIEI – in Russ. (Bulletin of the NGIEI), 2015, No. 12 (55), pp. 12–21.
6. Gulin S.V., Pirkin A.G. Izvestiya Sankt-Peterburgskogo gosudarstvennogo agrarnogo universiteta – in Russ. (Proceedings of the St. Petersburg State Agrarian University), 2022, No. 2 (67), pp. 145–154.
7. Shpiganovich A.N. et al. Izvestiya vysshih uchebnyh zavede-niy. Problemy energetiki – in Russ. (News of Higher Educational Institutions. Energy Problems), 2024, vol. 26, No. 2, pp. 68–77.
8. Shpiganovich A.N., Shpiganovich A.A., Zatsepin E.P. Iz-vestiya Tul’skogo gosudarstvennogo universiteta. Tehnicheskie nauki – in Russ. (News of Tula State University. Technical Science), 2018, No. 12, pp. 59–63.
9. Sadykov R.R. Izvestiya vysshih uchebnyh zavedeniy. Problemy energetiki – in Russ. (News of Higher Educational Institutions. Energy Problems), 2017, vol. 19, No. 5–6, pp. 98–108.
10. Hasan H., Mozumdar M., Al-Jufout S. Using 0.6 kV/1 kV Low Voltage in Distribution Systems for the Reduction of the Technical and Non-Technical Energy Losses. – 11th International Renewable Energy Congress, 2020, pp. 1–6, DOI: 10.1109/IREC48820.2020.9310417.
11. Zhang W. et al. Reliability Assessment of Medium and Low Voltage Distribution Networks Considering Distributed Energy Sour-ces. – 3rd International Conference on Energy Engineering and Power Systems, 2023, pp. 271–275, DOI: 10.1109/EEPS58791.2023.10257168.
12. Li K. et al. Electrical Performance Degradation Model and Residual Electrical Life Prediction for AC Contactor. – IEEE Transactions on Components, Packaging and Manufacturing Technology, 2020, vol. 10, No. 3, pp. 400–417, DOI: 10.1109/TCPMT.2020.2966516.
13. Kumari S., Kumar-M P., Muralidhar M. Reliability Estimation of Distribution Components-Contactors. – IEEE PES Asia-Pacific Power and Energy Engineering Conference, 2016, pp. 2066–2070, DOI: 10.1109/APPEEC.2016.7779849.
14. Kerckhove S., D’Hulst R., Hertem D.V. Reconfiguration Method for Low Voltage Distribution Networks. – IEEE PES Innovative Smart Grid Technologies Europe, 2023, DOI: 10.1109/ISGTEUROPE56780.2023.10407763.
15. Feng Z. A Study of Reliability of Low and Medium Voltage Distribution Networks Based on Fault Tree Theory. – IEEE 4th International Conference on Electronic Technology, Communication and Information, 2024, pp. 955–960, DOI: 10.1109/ICETCI61221.2024.10594689
Published
2025-01-30
Section
Article