Torque Characteristics of the Stepper Motors Used in the Nuclear Reactor Control Rod Drives

  • Aleksandr Yu. SMIRNOV
  • Dmitriy A. KUDRYASHOV
  • Danil A. UL’YANOV
  • Tat’yana N. USNUNTS-KRIGER
Keywords: nuclear reactor, control and protection system, synchronous drive, inductor stepped motor, tooth zone, stator, rotor, slot, tooth, slot pitch

Abstract

Absorber rods, also known as control rods, which regulate the nuclear fuel fission rate depending on their position in the reactor core, are among the most important components of nuclear power facilities. The control rods are moved and positioned by means of electric drives that are part of the reactor control and protection system (CPS). The article discusses inductor stepper motors with electromagnetic excitation of the CPS electric drive. Machines in the nonsalient-pole and salient-pole versions of the stator are compared, and it is concluded that the latter are more advantageous in terms of static and dynamic torques. Based on the model of a stepper motor with a different ratio of the number and width of teeth and slots in the stator and rotor, the motor dynamic mode (making the steps) and static operation mode (fixing the control rod in the specified position) are studied, taking into account the influence of the mechanical load nonlinearity. The calculations were experimentally verified by testing a full-scale prototype made on the basis of a serially produced machine. The results of computational and experimental studies of the torque characteristics of various stepper motor options for the CPS drive are presented. Recommendations are given on the choice of stepper motor tooth zone geometry, which make it possible to improve its torque characteristics in the static and dynamic operation modes.

Author Biographies

Aleksandr Yu. SMIRNOV

(Nizhny Novgorod State Technical University n.a. R.E. Alekseev, Nizhny Novgorod, Russia) – Professor of the Theoretical and General Electrical Engineering Dept., Dr. Sci. (Eng.), Professor.

Dmitriy A. KUDRYASHOV

(Nizhny Novgorod State Technical University n.a. R.E. Alekseev, Nizhny Novgorod, Russia) – Senior Lecturer of the Nuclear and Thermal Power Plants Dept., Cand. Sci. (Eng.).

Danil A. UL’YANOV

(Nizhny Novgorod State Technical University n.a. R.E. Alekseev, Nizhny Novgorod, Russia) – Postgraduate Student, Assistant of the Theoretical and General Electrical Engineering Dept.

Tat’yana N. USNUNTS-KRIGER

(Vyksa Branch of the National Research Technological University "MISIS", Vyksa, Nizhny Novgorod Region, Russia) – Head of the Basic Disciplines Dept., Cand. Sci. (Eng.)

References

1. Емельянов И.Я., Воскобойников В.В., Масленок Б.А. Основы проектирования механизмов управления ядерных реакторов. М.: Энергоатомиздат, 1978, 272 с.
2. Смирнов А.Ю., Кудряшов Д.А. Совершенствование электромеханических устройств управления скоростью перемещения регулирующего органа исполнительных механизмов систем управления и защиты ядерных реакторов. – Известия высших учебных заведений. Электромеханика, 2016, № 5, с. 25–30.
3. Смирнов А.Ю. и др. Синхронные машины для перемещения регулирующих органов ядерных реакторов и методы проверки их состояния. – Известия высших учебных заведений. Электромеханика, 2014, № 6, с. 22–27.
4. Lipo T.A. Introduction to AC Machine Design. IEEE Press. Series on Power Engineering. Hoboken: John Wiley & Sons, 2017, 544 p.
5. Корн Г., Корн Т. Справочник по математике для научных работников и инженеров. М.: Наука, 1984, 831 с.
6. Брынский Е.А., Данилевич Я.Б., Яковлев В.И. Электромагнитные поля в электрических машинах. Л.: Энергия, 1979, 176 с.
7. Домбровский В.В. Справочное пособие по расчёту электромагнитного поля в электрических машинах. Л.: Энергоатомиздат, 1983, 256 с.
8. Ивоботенко Б.А. и др. Дискретный электропривод с шаговыми двигателями. М.: Энергия, 1971, 624 с.
9. Ahn J-W. Switched Reluctance Machines / in book Torque control. Ed. by M.T. Lamchich. Zagreb, Croatia: InTech, 2011, pp. 201–252.
10. Смирнов, А.Ю., Кашканов А.О. Применение совмещённых обмоток в одноимённо-полюсных индукторных двигателях. – Электричество, 2019, № 9, с. 61–65.
11. Fukami T.A. et al. Multipole Synchronous Machine with Nonoverlapping Concentrated Armature and Field Windings on the Stator. – IEEE Transactions on Industrial Electronic, 2012, vol. 59 (6), pp. 2583–2591, DOI: 10.1109/TIE.2011.2157293.
12. Widmer J.D., Mecrow B.C. Optimized Segmental Rotor Switched Reluctance Machines with a Greater Number of Rotor Segments Than Stator Slots. – IEEE Transactions on Industrial Electronic, 2013, vol 49 (4) pp. 1491–1498, DOI: 10.1109/TIA.2013.2255574.
13. Демидова Г.Л. и др. Сравнительный анализ методов управления вентильно-индукторной электрической машиной. – Научно-технический вестник информационных технологий, механики и оптики, 2023, т. 23, № 2, с. 390–402.
14. Иванов-Смоленский А.В. Электрические машины. М.: Энергия, 1980, 928 c.
15. Raj M.A., Kavitha A. Effect of Rotor Geometry on Peak and Average Torque of External-Rotor Synchronous Reluctance Motor in Comparison with Switched Reluctance Motor for Low-Speed Direct-Drive Domestic Application. – IEEE Transactions on Magnetics, 2017, vol. 53 (11), DOI: 10.1109/TMAG.2017.2710191.
16. Han B. et al. Influence of Control and Structure Parameters on the Starting Performance of a 12/8 Pole Switched Reluctance Motor. – Energies, 2020, vol. 13, No 14, DOI:10.3390/en13143744.
17. Rallabandi V. et al. Optimal Design of a Switched Reluctance Motor with Magnetically Disconnected Rotor Modules Using a Design of Experiments Differential Evolution FEA-Based Method. – IEEE Transactions on Magnetics, 2018, vol. 54 (11), DOI: 10.1109/TMAG.2018.2850744.
18. Abdalmagid M., Bakr M.H., Emadi A. Geometry and Topology Optimization of Switched Reluctance Machines: A Review. – IEEE Access, 2022, vol. 10, pp. 5141–5170, DOI: 10.1109/ACCESS.2022.3140440.
19. Смирнов А.Ю., Александрова Е.Н., Зимин А.Ю. Уточнение моделей расчёта момента при проектировании явнополюсных индукторных двигателей. – Электричество, 2020, № 11. с. 54–59.
20. Иванов-Смоленский А.В. и др. Универсальный метод расчёта электромагнитных процессов в электрических машинах. М.: Энергоатомиздат, 1986, 216 с.
#
1. Emel’yanov I.Ya., Voskoboynikov V.V., Maslenok B.A. Osnovy proektirovaniya mehanizmov upravleniya yadernyh reaktorov (Fundamentals of Designing Control Mechanisms for Nuclear Reactors). M.: Energoatomizdat, 1978, 272 p.
2. Smirnov A.Yu., Kudryashov D.A. Izvestiya vysshih uchebnyh zavedeniy. Elektromehanika – in Russ. (News of Higher Educational Institutions. Electromechanics), 2016, No. 5, pp. 25–30.
3. Smirnov A.Yu. et al. Izvestiya vysshih uchebnyh zavedeniy. Elektromehanika – in Russ. (News of Higher Educational Institutions. Electromechanics), 2014, No. 6, pp. 22–27.
4. Lipo T.A. Introduction to AC Machine Design. IEEE Press. Series on Power Engineering. Hoboken: John Wiley & Sons, 2017, 544 p.
5. Korn G., Korn T. Spravochnik po matematike dlya nauchnyh rabotnikov i inzhenerov (Handbook of Mathematics for Researchers and Engineers). M.: Nauka, 1984, 831 p.
6. Brynskiy E.A., Danilevich Ya.B., Yakovlev V.I. Elektromag-nitnye polya v elektricheskih mashinah (Electromagnetic Fields in Electric Machines). L.: Energiya, 1979, 176 p.
7. Dombrovskiy V.V. Spravochnoe posobie po raschyotu elektro-magnitnogo polya v elektricheskih mashinah (A Reference Manual for Calculating the Electromagnetic Field in Electric Machines). L.: Energoatomizdat, 1983, 256 p.
8. Ivobotenko B.A. et al. Diskretnyy elektroprivod s shagovymi dvigatelyami (Discrete Electric Drive with Stepper Motors). M.: Energiya, 1971, 624 p.
9. Ahn J-W. Switched Reluctance Machines / in book Torque control. Ed. by M.T. Lamchich. Zagreb, Croatia: InTech, 2011, pp. 201–252.
10. Smirnov, A.Yu., Kashkanov A.O. Elektrichestvo – in Russ. (Electricity), 2019, No. 9, pp. 61–65.
11. Fukami T.A. et al. Multipole Synchronous Machine with Nonoverlapping Concentrated Armature and Field Windings on the Stator. – IEEE Transactions on Industrial Electronic, 2012, vol. 59 (6), pp. 2583–2591, DOI: 10.1109/TIE.2011.2157293.
12. Widmer J.D., Mecrow B.C. Optimized Segmental Rotor Switched Reluctance Machines with a Greater Number of Rotor Seg-ments Than Stator Slots. – IEEE Transactions on Industrial Electronic, 2013, vol 49 (4) pp. 1491–1498, DOI: 10.1109/TIA.2013.2255574.
13. Demidova G.L. et al. Nauchno-tehnicheskiy vestnik infor-matsionnyh tehnologiy, mehaniki i optiki – in Russ. (Scientific and Technical Bulletin of Information Technologies, Mechanics and Optics), 2023, vol. 23, No. 2, pp. 390–402.
14. Ivanov-Smolenskiy A.V. Elektricheskie mashiny (Electric Machines). M.: Energiya, 1980, 928 p.
15. Raj M.A., Kavitha A. Effect of Rotor Geometry on Peak and Average Torque of External-Rotor Synchronous Reluctance Motor in Comparison with Switched Reluctance Motor for Low-Speed Direct-Drive Domestic Application. – IEEE Transactions on Magnetics, 2017, vol. 53 (11), DOI: 10.1109/TMAG.2017.2710191.
16. Han B. et al. Influence of Control and Structure Parameters on the Starting Performance of a 12/8 Pole Switched Reluctance Motor. – Energies, 2020, vol. 13, No 14, DOI:10.3390/en13143744.
17. Rallabandi V. et al. Optimal Design of a Switched Reluctance Motor with Magnetically Disconnected Rotor Modules Using a Design of Experiments Differential Evolution FEA-Based Method. – IEEE Transactions on Magnetics, 2018, vol. 54 (11), DOI: 10.1109/TMAG.2018.2850744.
18. Abdalmagid M., Bakr M.H., Emadi A. Geometry and Topology Optimization of Switched Reluctance Machines: A Review. – IEEE Access, 2022, vol. 10, pp. 5141–5170, DOI: 10.1109/ACCESS.2022.3140440.
19. Smirnov A.Yu., Aleksandrova E.N., Zimin A.Yu. Elektri-chestvo – in Russ. (Electricity), 2020, No. 11. pp. 54–59.
20. Ivanov-Smolenskiy A.V. et al. Universal’nyy metod raschyota elektromagnitnyh protsessov v elektricheskih mashinah (A Universal Method for Calculating Electromagnetic Processes in Electric Machines). M.: Energoatomizdat, 1986, 216 p
Published
2025-01-30
Section
Article