A Computer Aided System for Designing the Electromechanical Drive for an Electrohydraulic Power Amplifier
Abstract
Mechanical resistance tests are an important tool for determining the reliability and service life of on-land, sea vessel-based, aircraft on-board, space, and special-purpose equipment and systems. The most cumbersome tests are those for bulky devices. In such cases, powerful hydraulic tracking drives (HTD) capable of producing shock and vibration loads that simulate transportation and operating conditions can serve as an efficient testing equipment. The HTDs are constructed on the basis of electrohydraulic power amplifiers, devices that combine an electromechanical drive (EMD) and a spool distributor. The proportional mechanical action on the HTD operating member is produced by opening and closing the hydraulic control channels. The article addresses the development of software tools for designing the electromechanical drive. The computer-aided design system used for this purpose is described, which consists of a synthesis subsystem and an analysis subsystem. The synthesis subsystem calculates the drive’s optimal geometry for various design situations taken from real design practices. The analysis subsystem estimates, through running in the Ansys Electronics Desktop software environment, the EMD electromagnetic state before making a decision to manufacture a prototype. The study results are of relevance in the context of substituting the import of products that have been subjected to international sanctions.
References
2. Ardashev D.V., Zhukov A.S. Technological Features of Manufacturing a High Precision Spool Pair. – 10th International Conference on Industrial Engineering, 2024, pp. 555–568, DOI: 10.1007/ 978-3-031-65870-9_51.
3. Korobatov D.V. et al. Requirements Definition, Modeling, and Simulation of Control Units of an Electrohydraulic Power Amplifier. – Advances in Science and Technology, 2024, vol. 148, pp. 179–186, DOI: 10.4028/p-c1JZF9.
4. LSVG & LSVHG High Speed Linear Servo Valves [Электрон. ресурс], URL: https://yuken-usa.com/pdf/special/Yuken_LSVG.pdf (дата обращения 22.12.2024).
5. Wu S. et al. Development of a Direct-Drive Servo Valve with High-Frequency Voice Coil Motor and Advanced Digital Controller. – IEEE/ASME Transactions on Mechatronics, 2014, vol. 19, No. 3, pp. 932–942, DOI: 10.1109/TMECH.2013.2264218.
6. Encica L. et al. Space Mapping Optimization of a Cylindrical Voice Coil Actuator. – IEEE Transactions on Industry Applications, 2006, vol. 42, No. 6, pp. 1437–1444, DOI: 10.1109/TIA.2006.882672.
7. Пат. RU 222690 U1. Электромеханический преобразователь электрогидравлического усилителя / В.В. Бодров и др., 2023.
8. Pat. US 20060091733 A1. High Efficiency Voice Coil Motor / M.B. Ninnard, J.-M. Gery, A.J. Hazelton, 2008.
9. Геча В.Я., Аронзон А.Н., Канунникова Е.А. Динамика трехкомпонентного привода солнечных батарей с упругими элементами. – Электротехника, 2003, № 2, с. 7–12.
10. Лифанов В.А. Расчет электрических машин малой мощности с возбуждением от постоянных магнитов. Челябинск: Издательский центр ЮУрГУ, 2010, 164 с.
11. Харламов В.В., Москалев Ю.В., Серкова Л.Е. Анализ схем размещения постоянных магнитов на роторе четырехполюсной электрической машины. – Динамика систем, механизмов и машин, 2019, т. 7, № 2, с. 73–79.
12. Karnavas Y., Chasiotis I., Peponakis E. Permanent Magnet Synchronous Motor Design Using Grey Wolf Optimizer Algorithm. – International Journal of Electrical and Computer Engineering, 2016, vol. 6, No. 3, pp. 1353–1362, DOI: 10.11591/ijece.v6i3.pp1353-1362.
13. Bjork R., Smith A., Bahl C.R.H. Analysis of the Magnetic Field, Force, and Torque for Two-Dimensional Halbach Cylinders. – Journal of Magnetism and Magnetic Materials, 2010, vol. 322, No. 1, pp. 133–141, 10.1016/j.jmmm.2009.08.044.
14. Dyck D., Lowther D. Automated Design of Magnetic Devices by Optimizing Material Distribution. – IEEE Transactions on Magnetics, 1996, vol. 32, No. 3, pp. 1188–1193, DOI: 10.1109/20.497456.
15. Takahashi N., Yamada T., Miyagi D. Examination of Optimal Design of IPM Motor Using ON/OFF Method. – IEEE Transactions on Magnetics, 2010, vol. 46, No. 8, pp. 3149–3152, DOI: 10.1109/TMAG.2010.2044382.
16. Okamoto Y., Tominaga Y., Sato S. Topological Design for 3-D Optimization Using the Combination of Multistep Genetic Algorithm with Design Space Reduction and Nonconforming Mesh Connecti-on. – IEEE Transactions on Magnetics, 2012, vol. 48, No. 2, pp. 515–518, DOI: 10.1109/TMAG.2011.2173305.
17. Sato T. et al. Shape Optimization of Rotor in Interior Permanent Magnet Motor Based on Topology. – IEEJ Transactions on Industry Applications, 2015, vol. 135, No. 3, pp. 291–298, DOI: 10.1541/ieejias.135.291.
18. Ганджа С.А. и др. Разработка инженерной методики расчета магнитных систем с постоянными магнитами на основе метода конечных элементов. – Вестник ПНИПУ. Электротехника, информационные технологии, системы управления, 2019, № 29, с. 58–74.
19. Ганджа С.А. Вентильные электрические машины с аксиальным магнитным потоком. Анализ, синтез, внедрение в производство: автореф. дис. … докт. техн. наук. Екатеринбург, 2012, 42 с.
20. Gandzha, S., Kosimov, B., Aminov, D. Application of the Ansys Electronics Desktop Software Package for Analysis of Claw-Pole Synchronous Motor. – Machines, 2019, vol. 7(4), DOI: 10.3390/machines7040065.
21. Простые формулы расчета индуктивности катушек [Электрон. ресурс], URL: https://coil32.net/ru/science/faq.html (дата обращения 22.12.2024).
---
Работа выполнялась при финансовой поддержке Минобрнауки России в рамках реализации комплексного проекта «Создание высокотехнологичного производства электрогидравлических усилителей мощности с электромеханическим преобразователем электродинамического типа с расширенным частотным диапазоном» по Соглашению № 075-11-2023-005 от 13.02.2023 г
#
1. Ardashev D.V., Zhukov A.S. Vestnik Yuzhno-Ural’skogo gosu-darstvennogo universiteta. Seriya: Mashinostroenie – in Russ. (Bulletin of South Ural State University. Series: Mechanical Engineering), 2024, vol. 24, No. 3, pp. 38–52.
2. Ardashev D.V., Zhukov A.S. Technological Features of Manufacturing a High Precision Spool Pair. – 10th International Conference on Industrial Engineering, 2024, pp. 555–568, DOI: 10.1007/978-3-031-65870-9_51.
3. Korobatov D.V. et al. Requirements Definition, Modeling, and Simulation of Control Units of an Electrohydraulic Power Amplifier. – Advances in Science and Technology, 2024, vol. 148, pp. 179–186, DOI: 10.4028/p-c1JZF9.
4. LSVG & LSVHG High Speed Linear Servo Valves [Electron. resource], URL: https://yuken-usa.com/pdf/special/Yuken_LSVG.pdf (Access on 22.12.2024).
5. Wu S. et al. Development of a Direct-Drive Servo Valve with High-Frequency Voice Coil Motor and Advanced Digital Controller. – IEEE/ASME Transactions on Mechatronics, 2014, vol. 19, No. 3, pp. 932–942, DOI: 10.1109/TMECH.2013.2264218.
6. Encica L. et al. Space Mapping Optimization of a Cylindrical Voice Coil Actuator. – IEEE Transactions on Industry Applications, 2006, vol. 42, No. 6, pp. 1437–1444, DOI: 10.1109/TIA.2006.882672.
7. Pat. RU 222690 U1. Elektromehanicheskiy preobrazovatel’ elektrogidravlicheskogo usilitelya (Electromechanical Converter of an Electrohydraulic Amplifier) / V.V. Bodrov et al., 2023.
8. Pat. US 20060091733 A1. High Efficiency Voice Coil Motor / M.B. Ninnard, J.-M. Gery, A.J. Hazelton, 2008.
9. Gecha V.Ya., Aronzon A.N., Kanunnikova E.A. Elektrotehni-ka – in Russ. (Electrical Engineering), 2003, No. 2, pp. 7–12.
10. Lifanov V.A. Raschet elektricheskih mashin maloy moshchnosti s vozbuzhdeniem ot postoyannyh magnitov (Calculation of Low-Power Electric Machines with Permanent Magnet Excitation). Chelyabinsk: Izdatel’skiy tsentr YuUrGU, 2010, 164 p.
11 Harlamov V.V., Moskalev Yu.V., Serkova L.E. Dinamika sistem, mehanizmov i mashin – in Russ. (Dynamics of Systems, Mechanisms and Machines), 2019, vol. 7, No. 2, pp. 73–79.
12. Karnavas Y., Chasiotis I., Peponakis E. Permanent Magnet Synchronous Motor Design Using Grey Wolf Optimizer Algorithm. – International Journal of Electrical and Computer Engineering, 2016, vol. 6, No. 3, pp. 1353–1362, DOI: 10.11591/ijece.v6i3.pp1353-1362.
13. Bjork R., Smith A., Bahl C.R.H. Analysis of the Magnetic Field, Force, and Torque for Two-Dimensional Halbach Cylinders. – Journal of Magnetism and Magnetic Materials, 2010, vol. 322, No. 1, pp. 133–141, 10.1016/j.jmmm.2009.08.044.
14. Dyck D., Lowther D. Automated Design of Magnetic Devices by Optimizing Material Distribution. – IEEE Transactions on Magnetics, 1996, vol. 32, No. 3, pp. 1188–1193, DOI: 10.1109/20.497456.
15. Takahashi N., Yamada T., Miyagi D. Examination of Optimal Design of IPM Motor Using ON/OFF Method. – IEEE Transactions on Magnetics, 2010, vol. 46, No. 8, pp. 3149–3152, DOI: 10.1109/TMAG.2010.2044382.
16. Okamoto Y., Tominaga Y., Sato S. Topological Design for 3-D Optimization Using the Combination of Multistep Genetic Algorithm with Design Space Reduction and Nonconforming Mesh Connection. – IEEE Transactions on Magnetics, 2012, vol. 48, No. 2, pp. 515–518, DOI: 10.1109/TMAG.2011.2173305.
17. Sato T. et al. Shape Optimization of Rotor in Interior Permanent Magnet Motor Based on Topology. – IEEJ Transactions on Industry Applications, 2015, vol. 135, No. 3, pp. 291–298, DOI: 10.1541/ieejias.135.291.
18. Gandzha S.A. et al. Vestnik PNIPU. Elektrotekhnika, informatsionnye tekhnologii, sistemy upravleniya – in Russ. (Bulletin of PNRPU. Electrical Engineering, Information Technology, Control Systems), 2019, No. 29, pp. 58–74.
19. Gandzha S.A. Ventil'nye elektricheskie mashiny s aksial'nym magnitnym potokom. Analiz, sintez, vnedrenie v proizvodstvo: avtoref. dis. … dokt. tekhn. nauk (Valve Electric Machines with Axial Magnetic Flux. Analysis, Synthesis, Introduction into Production: Abstract. Dis. ... Dr. Sci. (Eng.)). Ekaterinburg, 2012, 42 p.
20. Gandzha, S., Kosimov, B., Aminov, D. Application of the Ansys Electronics Desktop Software Package for Analysis of Claw-Pole Synchronous Motor. – Machines, 2019, vol. 7(4), DOI: 10.3390/machines7040065.
21. Prostye formuly rascheta induktivnosti katushek (Simple Formulas for Calculating the Inductance of Coils) [Electron. resource], URL: https://coil32.net/ru/science/faq.html (Access on 22.12.2024)
---
The work was financially supported by the Ministry of Science and Higher Education of the Russian Federation as part of the integrated project "Development of High-Tech Production of Electrohydraulic Power Amplifiers with an Electromechanical Electrodynamic Converter with an Extended Frequency Range" under Agreement No. 075-11-2023-005 of February 13,2023