Концептуальный анализ сверхпроводящих гидроэлектрических униполярных генераторов для алюминиевых заводов и крупных водородных электролизёров
Аннотация
Сверхпроводящий униполярный генератор с приводом от гидравлической турбины, оснащённый высокоскоростными жидкометаллическими токосъёмниками для больших токов, представляет практическое решение для прямого электроснабжения постоянным током алюминиевых заводов и водородных электролизёров. Данная технология исключает необходимость в традиционных системах «генератор переменного тока – трансформатор – выпрямитель», обеспечивая при этом высокий постоянный ток без пульсаций. Сочетание жидкометаллических токосъёмников, способных надёжно работать с непрерывными токами 250 кА, катушек возбуждения из NbTi и высокоскоростных первичных двигателей, таких как турбины Фрэнсиса или Пелтона, обеспечивает мощность генераторов 20–100 МВт. Гидроэлектростанции, которые исторически часто расположены в непосредственной близости от алюминиевых заводов – основных потребителей постоянного тока – предоставляют идеальную платформу для внедрения крупномасштабных сверхпроводящих генераторов благодаря их значительной выходной мощности и существующей инфраструктуре. Помимо повышения системной эффективности – маргинального, но экономически значимого – данный подход обеспечивает развитие интегрированной сверхпроводящей инфраструктуры посредством высокотемпературных сверхпроводящих (ВТСП) кабелей, заменяющих традиционные массивные токонесущие шины. Последние разработки в области сверхпроводящих кабелей, включая проект DEMO 200 (200 кА), демонстрируют жизнеспособность такой интеграции. Предлагаемое решение использует исключительно зрелые технологии с развитыми цепочками поставок, что позволяет быстро запустить производство в промышленном масштабе. Такой подход создаёт реалистичный и экономически обоснованный путь для внедрения практических сверхпроводящих систем в энергетическом секторе, значительно повышая системную эффективность электролитического производства алюминия и водорода. Данная работа не является всесторонним проектным исследованием, но представляет попытку критического инженерного анализа применения предлагаемого решения с обзором перечня доступных вспомогательных технологий.
Литература
2. International Energy Agency, Steel and Aluminium Net Zero Emissions Guide [Электрон. ресурс], URL: https://www.iea.org/reports/steel-and-aluminium (дата обращения 17.08.2025).
3. Krasnoyarsk Aluminium Smelter [Электрон. ресурс], URL: https://rusal.ru/en/about/geography/krasnoyarskiy-alyuminievyy-zavod (дата обращения 17.08.2025).
4. Bratsk Aluminium Smelter [Электрон. ресурс], URL: https://rusal.ru/en/about/geography/bratskiy-alyuminievyy-zavod (дата обращения 17.08.2025).
5. Sayanogorsk Aluminium Smelter [Электрон. ресурс], URL: https://rusal.ru/en/about/geography/sayanogorskiy-alyuminievyy-zavod (дата обращения 17.08.2025).
6. Hydro Sunndal [Электрон. ресурс], URL: https://www.hydro.com/en/global/about-hydro/hydro-worldwide/europe/norway/sunndal (дата обращения 17.08.2025).
7. Fjarðaál Aluminum Smelter [Электрон. ресурс], URL: https://www.bechtel.com/projects/fjardaal-aluminum-smelter (дата обращения 17.08.2025).
8. Rio Tinto Saguenay–Lac-Saint-Jean [Электрон. ресурс], URL: https://www.riotinto.com/en/operations/canada/saguenay (дата обращения 17.08.2025).
9. Rio Tinto NZAS [Электрон. ресурс], URL: https://nzas.co.nz (дата обращения 17.08.2025).
10. Aqueveque P.E. et al. On the Efficiency and Reliability of High-Currents Rectifiers. – IEEE Industry Applications Conf. Forty-First IAS Annual Meeting, 2006, DOI: 10.1109/IAS.2006.256697.
11. Rodriguez J.R. et al. Large Current Rectifiers: State of the Art and Future Trends. – IEEE Transactions on Industrial Electronics, 2005, vol. 52, No. 3, pp. 738–746, DOI: 10.1109/TIE.2005.843949.
12. IEA Outlook for key energy transition minerals – Copper [Электрон. ресурс], URL: https://www.iea.org/reports/copper (дата обращения 17.08.2025).
13. CODELCO December 2024 results [Электрон. ресурс], URL: https://www.codelco.com/sites/site/docs/20240426/20240426181050/operational_and_financial_report_december_31_2024.pdf (дата обращения 17.08.2025).
14. Norilsk Nickel Annual Report [Электрон. ресурс], URL: https://ar2024.nornickel.com (дата обращения 17.08.2025).
15. Glencore Canada – What we do – Copper [Электрон. ресурс], URL: https://www.glencore.ca/en/what-we-do/copper (дата обращения 17.08.2025).
16. Elschner S. et al. DEMO200 – Concept and Design of a Superconducting 200 kA DC Busbar Demonstrator for Application in an Aluminum Smelter. – IEEE Transactions on Applied Superconductivity, 2022, vol. 32, No. 4, DOI: 10.1109/TASC.2022.3152987.
17. Matsekh A. Handbook of Superconductivity: Characterization and Applications, Vol. III, Chapter H1.12: Homopolar Motors. Boca Raton, U.S.A.: CRC Press, 2022, 10 p.
18. McDonald K.T. Is Faraday’s Disk Dynamo a Flux-Rule Exception? Joseph Henry Laboratories, Princeton University, Princeton, NJ 08544 (July 27, 2019; updated March 31, 2020).
19. Guala-Valverde J. et al. The Homopolar Motor: A True Relativistic Engine. – American Journal of Physics, 2002, vol. 70, pp. 1052–1055, DOI: 10.1119/1.1498857.
20. Pat. US 8288910 B1. Multi-Winding Homopolar Electric Machine/ C.W. Van Neste, 2012.
21. Суханов Л.А., Сафиуллина Р.Х., Бобков Ю.А. Электрические униполярные машины. М.: ВНИИЭМ, 1964, 136 с.
22. Kalsi S. et al. Homopolar Superconducting AC Machines, with HTS Dynamo Driven Field Coils, for Aerospace Applications. – IOP Conf. Series: Materials Science and Engineering, 2020, vol. 756, No. 1, DOI: 10.1088/1757-899X/756/1/012028.
23. Wang S. et al. Rotor Design of HTS Homopolar Inductor Alternator Based on Multi-Physics Field. – Int. Conf. on Power System Technology, 2021, pp. 2451–2458, DOI: 10.1109/POWERCON53785.2021.9697485.
24. Ma J. et al. Design of a 10 kW Superconducting Homopolar Inductor Machine Based on HTS REBCO Magnet. – IEEE Transactions on Applied Superconductivity, 2024, vol. 34, No. 5, DOI: 10.1109/TASC.2023.3345289.
25. Fair R. et al. Development of an HTS Hydroelectric Power Generator for the Hirschaid Power Station. – J. of Physics: Conf. Series, 9th European Conf. on Applied Superconductivity, 2010, vol. 234, DOI: 10.1088/1742-6596/234/3/032008.
26. Hydro Review, Superconductor Technology Makes Hydropo-wer Debut [Электрон. ресурс], URL: https://www.hydroreview.com/world-regions/europe/superconductor-technology (Accessed on 20.09.2025).
27. Markus Bauer et al. HTS Field Coils with Robust Design for a Superconducting Wind Turbine Generator, Presentation MT-25 Conf. 2017.
28. Bergen A. et al. Design and in-Field Testing of the World’s First ReBCO Rotor for a 3.6 MW Wind Generator. – Superconductor Science and Technology, 2019, vol 32, 2019, DOI: 10.1088/1361-6668/ab48d6.
29. Koponen J. et al. Effect of Power Quality on the Design of Proton Exchange Membrane Water Electrolysis Systems. – Applied Energy, 2020, vol. 279, DOI: 10.1016/j.apenergy.2020.115791.
30. Cooley L.D., Ghosh A.K., Scanlan R.M. Costs of High-Field Superconducting Strands for Particle Accelerators Magnets. – Superconductor Science and Technology, 2005, vol. 18, No. 4, DOI: 10.1088/0953-2048/18/4/R01.
31. International Hydropower Association, 2024 World Hydropower Outlook – Opportunities to Advance Net Zero [Электрон. ресурс], URL: https://www.hydropower.org/publications/2024-world-hydropower-outlook (дата обращения 20.09.2025).
32. Irena. Renewable Energy Technologies: Cost Analysis Series, Vol. 1: Power Sector, iss. 3/5. Hydropower June 2012, 44 p.
33. Raadal H.L. et al. Life Cycle Greenhouse Gas (GHG) Emissions from the Generation of Wind and Hydro Power. – Renewable and Sustainable Energy Reviews, 2011, vol. 15, pp. 3417–3422, DOI: 10.1016/j.rser.2011.05.001.
34. Xu R. et al. A Global-Scale Framework for Hydropower Development Incorporating Strict Environmental Constraints. – Nature Water, 2023, No. 1, pp. 113–122, DOI: 10.1038/s44221-022-00004-1.
35. Sternberg R. Hydropower: Dimensions of Social and Environmental Coexistence. – Renewable and Sustainable Energy Reviews, 2008, vol. 12, pp 1588–1621, DOI: 10.1016/j.rser.2007.01.027.
36. Abrahamsen A.B. et al. Large Superconducting Wind Turbine Generators. – Energy Procedia, 2012, vol. 24, pp. 60–67, DOI: 10.1016/j.egypro.2012.06.087.
37. Song X. et al. Design Study of Fully Superconducting Wind Turbine Generators. – IEEE Transactions on Applied Superconductivity, 2015, vol 25, No. 3, DOI: 10.1109/TASC.2015.2396682.
38. Stauntner W. et al. Cryogenic Aspects of a 20 MW Class Low-Temperature Superconducting Generator for the Renewables Industry. – IOP Conf. Series: Materials Science and Engineering, 2024, vol. 1301, DOI: 10.1088/1757-899X/1301/1/012048.
39. Iliev I., Trivedi C., Dahlhaug O.G. Variable-Speed Operation of Francis Turbines: A Review of the Perspectives and Challenges. – Renewable and Sustainable Energy Reviews, 2019, vol. 103, pp. 109–121, DOI: 10.1016/j.rser.2018.12.033.
40. Shrestha U., Choi Y. A CFD-Based Shape Design Optimization Process of Fixed Flow Passages in a Francis Hydro Turbine. – Processes, 2020, vol. 8, DOI: 10.3390/pr8111392.
41. Maw T.T., Mya N.S., Khaing C.C. Design and Analysis of 30 MW Pelton Turbine. – International Journal of Scientific Engineering and Technology Research, 2019, vol. 8, pp 452–457.
42. 150,000 Continuous D-C Amperes Easy for Acyclic Generator, Power Engineering, 1962.
43. Fuger R. et al. A Superconducting Homopolar Motor and Generator – New Approaches. – Superconducting Science and Technology, 2016, vol 29, DOI: 10.1088/0953-2048/29/3/034001.
44. Wilson M.N. Superconducting Magnets. Oxford: Clarendon Press, 1987, 335 p.
45. Giger U., Pagani P., Trepp C. The Low Temperature Plant for the Big European Bubble Chamber BEBC. – Cryogenics, 1971, vol. 11, No. 6, pp. 451–455, DOI: 10.1016/0011-2275(71)90269-4.
46. Green M.A. The Development of Superconducting Detector Magnets From 1965 to the Present. – IEEE Transactions on Applied Superconductivity, 2007, vol. 27, No. 4, DOI: 10.1109/TASC.2016.2634522.
47. Mitchell N. et al. The ITER Magnets: Design and Construction Status. – IEEE Transactions on Applied Superconductivity, 2012, vol. 22, No. 3, DOI: 10.1109/TASC.2011.2174560.
48. Lim B. et al. Design of ITER PF Coils. – IEEE Transactions on Applied Superconductivity, 2011, vol. 21, No. 3, pp 1918–1921, DOI: 10.1109/TASC.2010.2092732.
49. Parizh M., Sautner W. Handbook of Superconductivity: Characterization and Applications, vol. III, Ch. H1.3: MRI Magnets. Boca Raton, U.S.A.: CRC Press, 2022, 56 p.
50. Allais A. et al. SuperRail–World-First HTS Cable to be Installed on a Railway Network in France. – IEEE Transactions on Applied Superconductivity, 2024, vol. 34, No. 3, DOI: 10.1109/TASC.2024.3356450.
#
1. Kermeli K. et al. Energy Efficiency Improvement and GHG Abatement in the Global Production of Primary Aluminium. – Energy Efficiency, 2015, vol. 8, pp. 629–666, DOI: 10.1007/s12053-014-9301-7.
2. International Energy Agency, Steel and Aluminium Net Zero Emissions Guide [Electron. resource], URL: https://www.iea.org/reports/steel-and-aluminium (Accessed on 17.08.2025).
3. Krasnoyarsk Aluminium Smelter [Electron. resource], URL: https://rusal.ru/en/about/geography/krasnoyarskiy-alyuminievyy-zavod (Accessed on 17.08.2025).
4. Bratsk Aluminium Smelter [Electron. resource], URL: https://rusal.ru/en/about/geography/bratskiy-alyuminievyy-zavod (Accessed on 17.08.2025).
5. Sayanogorsk Aluminium Smelter [Electron. resource], URL: https://rusal.ru/en/about/geography/sayanogorskiy-alyuminievyy-zavod (Accessed on 17.08.2025).
6. Hydro Sunndal [Electron. resource], URL: https://www.hydro.com/en/global/about-hydro/hydro-worldwide/europe/norway/sunndal (Accessed on 17.08.2025).
7. Fjarðaál Aluminum Smelter [Electron. resource], URL: https://www.bechtel.com/projects/fjardaal-aluminum-smelter (Accessed on 17.08.2025).
8. Rio Tinto Saguenay–Lac-Saint-Jean [Electron. resource], URL: https://www.riotinto.com/en/operations/canada/saguenay (Accessed on 17.08.2025).
9. Rio Tinto NZAS [Electron. resource], URL: https://nzas.co.nz (Accessed on 17.08.2025).
10. Aqueveque P.E. et al. On the Efficiency and Reliability of High-Currents Rectifiers. – IEEE Industry Applications Conf. Forty-First IAS Annual Meeting, 2006, DOI: 10.1109/IAS.2006.256697.
11. Rodriguez J.R. et al. Large Current Rectifiers: State of the Art and Future Trends. – IEEE Transactions on Industrial Electronics, 2005, vol. 52, No. 3, pp. 738–746, DOI: 10.1109/TIE.2005.843949.
12. IEA Outlook for key energy transition minerals - Copper [Electron. resource], URL: https://www.iea.org/reports/copper (Accessed on 17.08.2025).
13. CODELCO December 2024 results [Electron. resource], URL: https://www.codelco.com/sites/site/docs/20240426/20240426181050/operational_and_financial_report_december_31_2024.pdf (Accessed on 17.08.2025).
14. Norilsk Nickel Annual Report [Electron. resource], URL: https://ar2024.nornickel.com (Accessed on 17.08.2025).
15. Glencore Canada – What we do – Copper [Electron. resource], URL: https://www.glencore.ca/en/what-we-do/copper (Accessed on 17.08.2025).
16. Elschner S. et al. DEMO200 – Concept and Design of a Superconducting 200 kA DC Busbar Demonstrator for Application in an Aluminum Smelter. – IEEE Transactions on Applied Superconductivity, 2022, vol. 32, No. 4, DOI: 10.1109/TASC.2022.3152987.
17. Matsekh A. Handbook of Superconductivity: Characterization and Applications, vol. III, Ch. H1.12: Homopolar Motors. Boca Raton, U.S.A.: CRC Press, 2022, 10 p.
18. McDonald K.T. Is Faraday’s Disk Dynamo a Flux-Rule Exception? Joseph Henry Laboratories, Princeton University, Princeton, NJ 08544 (July 27, 2019; updated March 31, 2020).
19. Guala-Valverde J. et al. The Homopolar Motor: A True Relativistic Engine. – American Journal of Physics, 2002, vol. 70, pp. 1052–1055, DOI: 10.1119/1.1498857.
20. Pat. US 8288910 B1. Multi-Winding Homopolar Electric Machine/ C.W. Van Neste, 2012.
21. Suhanov L.A., Safiullina R.H., Bobkov Yu.A. Elektricheskie unipolyarnye mashiny (Electric Unipolar Machines). M.: VNIIEM, 1964, 136 p.
22. Kalsi S. et al. Homopolar Superconducting AC Machines, with HTS Dynamo Driven Field Coils, for Aerospace Applications. – IOP Conf. Series: Materials Science and Engineering, 2020, vol. 756, No. 1, DOI: 10.1088/1757-899X/756/1/012028.
23. Wang S. et al. Rotor Design of HTS Homopolar Inductor Alternator Based on Multi-Physics Field. – Int. Conf. on Power System Technology, 2021, pp. 2451–2458, DOI: 10.1109/POWERCON53785. 2021.9697485.
24. Ma J. et al. Design of a 10 kW Superconducting Homopolar Inductor Machine Based on HTS REBCO Magnet. – IEEE Transactions on Applied Superconductivity, 2024, vol. 34, No. 5, DOI: 10.1109/TASC.2023.3345289.
25. Fair R. et al. Development of an HTS Hydroelectric Power Generator for the Hirschaid Power Station. – J. of Physics: Conf. Series, 9th European Conf. on Applied Superconductivity, 2010, vol. 234, DOI: 10.1088/1742-6596/234/3/032008.
26. Hydro Review, Superconductor Technology Makes Hydropower Debut [Electron. resource], URL: https://www.hydroreview.com/world-regions/europe/superconductor-technology (Accessed on 20.09.2025).
27. Markus Bauer et al. HTS Field Coils with Robust Design for a Superconducting Wind Turbine Generator, Presentation MT-25 Conf. 2017.
28. Bergen A. et al. Design and in-Field Testing of the World’s First ReBCO Rotor for a 3.6 MW Wind Generator. – Superconductor Science and Technology, 2019, vol 32, 2019, DOI: 10.1088/1361-6668/ab48d6.
29. Koponen J. et al. Effect of Power Quality on the Design of Proton Exchange Membrane Water Electrolysis Systems. – Applied Energy, 2020, vol. 279, DOI: 10.1016/j.apenergy.2020.115791.
30. Cooley L.D., Ghosh A.K., Scanlan R.M. Costs of High-Field Superconducting Strands for Particle Accelerators Magnets. – Superconductor Science and Technology, 2005, vol. 18, No. 4, DOI: 10.1088/0953-2048/18/4/R01.
31. International Hydropower Association, 2024 World Hydro-power Outlook – Opportunities to Advance Net Zero [Electron. resource], URL: https://www.hydropower.org/publications/2024-world-hydropower-outlook (Accessed on 20.09.2025).
32. Irena. Renewable Energy Technologies: Cost Analysis Series, Vol. 1: Power Sector, iss. 3/5. Hydropower June 2012, 44 p.
33. Raadal H.L. et al. Life Cycle Greenhouse Gas (GHG) Emissions from the Generation of Wind and Hydro Power. – Renewable and Sustainable Energy Reviews, 2011, vol. 15, pp. 3417–3422, DOI: 10.1016/j.rser.2011.05.001.
34. Xu R. et al. A Global-Scale Framework for Hydropower Development Incorporating Strict Environmental Constraints. – Nature Water, 2023, No. 1, pp. 113–122, DOI: 10.1038/s44221-022-00004-1.
35. Sternberg R. Hydropower: Dimensions of Social and Environmental Coexistence. – Renewable and Sustainable Energy Reviews, 2008, vol. 12, pp 1588–1621, DOI: 10.1016/j.rser.2007.01.027.
36. Abrahamsen A.B. et al. Large Superconducting Wind Turbine Generators. – Energy Procedia, 2012, vol. 24, pp. 60–67, DOI: 10.1016/j.egypro.2012.06.087.
37. Song X. et al. Design Study of Fully Superconducting Wind Turbine Generators. – IEEE Transactions on Applied Superconductivity, 2015, vol 25, No. 3, DOI: 10.1109/TASC.2015.2396682.
38. Stauntner W. et al. Cryogenic Aspects of a 20 MW Class Low-Temperature Superconducting Generator for the Renewables Industry. – IOP Conf. Series: Materials Science and Engineering, 2024, vol. 1301, DOI: 10.1088/1757-899X/1301/1/012048.
39. Iliev I., Trivedi C., Dahlhaug O.G. Variable-Speed Operation of Francis Turbines: A Review of the Perspectives and Challenges. – Renewable and Sustainable Energy Reviews, 2019, vol. 103, pp. 109–121, DOI: 10.1016/j.rser.2018.12.033.
40. Shrestha U., Choi Y. A CFD-Based Shape Design Optimization Process of Fixed Flow Passages in a Francis Hydro Turbine. – Processes, 2020, vol. 8, DOI: 10.3390/pr8111392.
41. Maw T.T., Mya N.S., Khaing C.C. Design and Analysis of 30 MW Pelton Turbine. – International Journal of Scientific Engineering and Technology Research, 2019, vol. 8, pp 452–457.
42. 150,000 Continuous D-C Amperes Easy for Acyclic Generator, Power Engineering, 1962.
43. Fuger R. et al. A Superconducting Homopolar Motor and Generator – New Approaches. – Superconducting Science and Technology, 2016, vol 29, DOI: 10.1088/0953-2048/29/3/034001.
44. Wilson M.N. Superconducting Magnets. Oxford: Clarendon Press, 1987, 335 p.
45. Giger U., Pagani P., Trepp C. The Low Temperature Plant for the Big European Bubble Chamber BEBC. – Cryogenics, 1971, vol. 11, No. 6, pp. 451–455, DOI: 10.1016/0011-2275(71)90269-4.
46. Green M.A. The Development of Superconducting Detector Magnets From 1965 to the Present. – IEEE Transactions on Applied Superconductivity, 2007, vol. 27, No. 4, DOI: 10.1109/TASC.2016.2634522.
47. Mitchell N. et al. The ITER Magnets: Design and Construction Status. – IEEE Transactions on Applied Superconductivity, 2012, vol. 22, No. 3, DOI: 10.1109/TASC.2011.2174560.
48. Lim B. et al. Design of ITER PF Coils. – IEEE Transactions on Applied Superconductivity, 2011, vol. 21, No. 3, pp 1918–1921, DOI: 10.1109/TASC.2010.2092732.
49. Parizh M., Sautner W. Handbook of Superconductivity: Characterization and Applications, vol. III, Ch. H1.3: MRI Magnets. Boca Raton, U.S.A.: CRC Press, 2022, 56 p.
50. Allais A. et al. SuperRail–World-First HTS Cable to be Installed on a Railway Network in France. – IEEE Transactions on Applied Superconductivity, 2024, vol. 34, No. 3, DOI: 10.1109/TASC.2024.3356450

