Трехэлектродный дуговой реактор постоянного тока для синтеза высокоэнтропийных боридов переходных металлов
Аннотация
В статье представлены результаты экспериментальных исследований, проведенных на трехэлектродном безвакуумном дуговом реакторе постоянного тока в области получения новых материалов. Впервые разработанная конструкция трехэлектродного дугового реактора использовалась для решения задачи получения высокоэнтропийных боридов. Данная конструкция реактора реализует необходимые условия по достижению требуемых температур для успешного протекания процесса синтеза. В работе представлены описание и анализ настраиваемых исходных и фактических параметров рабочего цикла дугового реактора. Реактор работает по так называемому «безвакуумному» принципу в открытой воздушной среде. Определен состав формирующейся автономной газовой среды реакционной зоны, обеспечивающей защитную атмосферу из газов CO и CO2, предотвращающей окисление продукта при работе дугового реактора в открытой воздушной среде. Исследованы параметры температурного поля и энергетические характеристики реактора. Успешная апробация разработанного реактора продемонстрирована на примере синтеза порошка высокоэнтропийного борида TiZrNbHfTaB2 путем воздействия дугового разряда постоянного тока на смесь порошков титана, циркония, гафния, ниобия, тантала и бора. Полученные результаты могут быть использованы для дальнейшего совершенствования технологии синтеза новых материалов с уникальными свойствами, востребованных в различных отраслях промышленности, таких как энергетика, машиностроение и аэрокосмическая техника.
Литература
2. Nam J. et al. Chemical Vapor Deposition of Graphene and Its Characterizations and Applications. – Current Applied Physics, 2024, vol.61, pp. 55–70, DOI: 10.1016/j.cap.2024.02.010.
3. Bhowmik S., Rajan A.G. Chemical Vapor Deposition Of 2D Materials: a Review of Modeling, Simulation, And Machine Learning Studies. – IScience, 2022, vol. 25, DOI: 10.1016/j.isci.2022.103832.
4. Ali M. et al. Generation of Titanium Dioxide Nanoparticles in Liquids Using Laser Ablation: Analysing the Roles of Temperature and Viscosity. – Materials Science and Engineering: B, 2025, vol. 319, DOI: 10.1016/j.mseb.2025.118383.
5. Nallapareddy C.R., Underwood T.C. What is “Efficiency” in Plasma Chemical Processes? – IScience, 2025, vol. 28. No. 5, DOI: 10.1016/j.isci.2025.112297.
6. Kone E.R. et al. Replication of Mechanochemical Syntheses of γ-Graphyne from Calcium Carbide Fails to Produce the Claimed Product. – Carbon, 2025, vol. 232, DOI: 10.1016/j.carbon.2024.119808.
7. Arora N., Sharma N.N. Arc Discharge Synthesis of Carbon Nanotubes: Comprehensive Review. – Diamond and Related Materials, 2014, vol. 50, pp. 135–150, DOI: 10.1016/j.diamond.2014.10.001.
8. Shao S. et al. Comparison and Analysis of Properties of Transparent and Translucent Diamonds Prepared via DC Arc Plasma Jet CVD. – Diamond and Related Materials, 2024, vol. 142, DOI: 10.1016/j.diamond.2023.110710.
9. Yu J. et al. Synthesis of High-Quality Two-Dimensional Materials Via Chemical Vapor Deposition. – Chemical Science, 2015, vol. 6, pp. 6705–6716, DOI: 10.1039/C5SC01941A.
10. Shaheen M.E., Abdelwahab A.Y.E. Laser Ablation in Liquids: A Versatile Technique for Nanoparticle Generation. – Optics & Laser Technology, 2025, vol. 186, DOI: 10.1016/j.optlastec.2025.112705.
11. Panchal D. et al. Advanced Cold Plasma-Assisted Technology for Green and Sustainable Ammonia Synthesis. – Chemical Engineering Journal, 2024, vol. 498, DOI: 10.1016/j.cej.2024.154920.
12. Ali W.A., Richards S.E., Alzard R.H. Unlocking the Potential of Ball Milling for Nanomaterial Synthesis: An Overview. – Journal of Industrial and Engineering Chemistry, 2025, DOI: 10.1016/j.jiec.2025.01.054.
13. Vassilyeva Y. et al. Synthesis of Mo2C-Based Material in DC Arc Discharge Plasma Under Ambient Air Conditions. – Materials Chemistry and Physics, 2023, vol. 314, DOI: 10.1016/j.matchemphys.2023.128805.
14. Anjana E.Ⅰ. et al. Thermal Plasma Synthesis of Silicon Carbide from Solar Waste Panels. – IEEE Transactions on Plasma Science, 2023, vol. 52, No. 7, pp. 2602–2608, DOI: 10.1109/TPS.2023.3325273.
15. Zaikovskii A. et al. Tin–Carbon Nanomaterial Formation in a Helium Atmosphere During Arc-Discharge. – RSC Advances, 2019, vol. 9, No. 63, pp. 36621–36630, DOI: 10.1039/C9RA05485E.
16. Pak A.Y. et al. Silicon Carbide Obtaining with DC Arc-Discharge Plasma: Synthesis, Product Characterization and Purifica-tion. – Materials Chemistry and Physics, 2021, vol. 271, DOI: 10.1016/j.matchemphys.2021.124938.
17. Pak A.Y. et al. Synthesis of Transition Metal Carbides and High-Entropy Carbide TiZrNbHfTaC5 in Self-Shielding DC Arc Discharge Plasma. – Ceramics International, 2022, vol. 48, No. 3, pp. 3818–3825, DOI: 10.1016/j.ceramint.2021.10.165.
18. Пат. RU 2841156 C1. Способ получения порошка однофазного высокоэнтропийного диборида состава Ti-Zr-Nb-Hf-Tа-B с гексагональной решеткой / А.Я. Пак и др., 2025.
19. Monteverde F. et al. Compositional Pathways and Anisotropic Thermal Expansion of High-Entropy Transition Metal Diborides. – Journal of the European Ceramic Society, 2021, vol. 41, No. 13, pp. 6255–6266, DOI: 10.1016/j.jeurceramsoc.2021.05.053.
---
Исследование выполнено за счет гранта Российского научного фонда № 25-19-00390, https://rscf.ru/project/25-19-00390.
#
1. Pravitel’stvo Rossii. Natsional’nyy proekt «Novye materialy i himiya» (The Russian Government. National Project "New Materials and Chemistry") [Electron. resource], URL: http://government.ru/rugovclassifier/931/about/ (Access on 19.05.2025).
2. Nam J. et al. Chemical Vapor Deposition of Graphene and Its Characterizations and Applications. – Current Applied Physics, 2024, vol.61, pp. 55–70, DOI: 10.1016/j.cap.2024.02.010.
3. Bhowmik S., Rajan A.G. Chemical Vapor Deposition Of 2D Materials: a Review of Modeling, Simulation, And Machine Learning Studies. – IScience, 2022, vol. 25, DOI: 10.1016/j.isci.2022.103832.
4. Ali M. et al. Generation of Titanium Dioxide Nanoparticles in Liquids Using Laser Ablation: Analysing the Roles of Temperature and Viscosity. – Materials Science and Engineering: B, 2025, vol. 319, DOI: 10.1016/j.mseb.2025.118383.
5. Nallapareddy C.R., Underwood T.C. What is “Efficiency” in Plasma Chemical Processes? – IScience, 2025, vol. 28. No. 5, DOI: 10.1016/j.isci.2025.112297.
6. Kone E.R. et al. Replication of Mechanochemical Syntheses of γ-Graphyne from Calcium Carbide Fails to Produce the Claimed Product. – Carbon, 2025, vol. 232, DOI: 10.1016/j.carbon.2024.119808.
7. Arora N., Sharma N.N. Arc Discharge Synthesis of Carbon Nanotubes: Comprehensive Review. – Diamond and Related Materials, 2014, vol. 50, pp. 135–150, DOI: 10.1016/j.diamond.2014.10.001.
8. Shao S. et al. Comparison and Analysis of Properties of Transparent and Translucent Diamonds Prepared via DC Arc Plasma Jet CVD. – Diamond and Related Materials, 2024, vol. 142, DOI: 10.1016/j.diamond.2023.110710.
9. Yu J. et al. Synthesis of High-Quality Two-Dimensional Materials Via Chemical Vapor Deposition. – Chemical Science, 2015, vol. 6, pp. 6705–6716, DOI: 10.1039/C5SC01941A.
10. Shaheen M.E., Abdelwahab A.Y.E. Laser Ablation in Liquids: A Versatile Technique for Nanoparticle Generation. – Optics & Laser Technology, 2025, vol. 186, DOI: 10.1016/j.optlastec.2025.112705.
11. Panchal D. et al. Advanced Cold Plasma-Assisted Technology for Green and Sustainable Ammonia Synthesis. – Chemical Engineering Journal, 2024, vol. 498, DOI: 10.1016/j.cej.2024.154920.
12. Ali W.A., Richards S.E., Alzard R.H. Unlocking the Potential of Ball Milling for Nanomaterial Synthesis: An Overview. – Journal of Industrial and Engineering Chemistry, 2025, DOI: 10.1016/j.jiec.2025.01.054.
13. Vassilyeva Y. et al. Synthesis of Mo2C-Based Material in DC Arc Discharge Plasma Under Ambient Air Conditions. – Materials Chemistry and Physics, 2023, vol. 314, DOI: 10.1016/j.matchemphys.2023.128805.
14. Anjana E.Ⅰ. et al. Thermal Plasma Synthesis of Silicon Carbide from Solar Waste Panels. – IEEE Transactions on Plasma Science, 2023, vol. 52, No. 7, pp. 2602–2608, DOI: 10.1109/TPS.2023.3325273.
15. Zaikovskii A. et al. Tin–Carbon Nanomaterial Formation in a Helium Atmosphere During Arc-Discharge. – RSC Advances, 2019, vol. 9, No. 63, pp. 36621–36630, DOI: 10.1039/C9RA05485E.
16. Pak A.Y. et al. Silicon Carbide Obtaining with DC Arc-Discharge Plasma: Synthesis, Product Characterization and Purification. – Materials Chemistry and Physics, 2021, vol. 271, DOI: 10.1016/j.matchemphys.2021.124938.
17. Pak A.Y. et al. Synthesis of Transition Metal Carbides and High-Entropy Carbide TiZrNbHfTaC5 in Self-Shielding DC Arc Discharge Plasma. – Ceramics International, 2022, vol. 48, No. 3, pp. 3818–3825, DOI: 10.1016/j.ceramint.2021.10.165.
18. Pat. RU 2841156 C1. Sposob polucheniya poroshka odnofaznogo vysokoentropiynogo diborida sostava Ti-Zr-Nb-Hf-Ta-B s geksagonal’noy reshetkoy (Method of Producing Powder of Single-Phase High-Entropy Diboride of Composition Ti-Zr-Nb-Hf-Ta-B with Hexagonal Lattice) / A.Ya. Pak et al., 2025.
19. Monteverde F. et al. Compositional Pathways and Anisotropic Thermal Expansion of High-Entropy Transition Metal Diborides. – Journal of the European Ceramic Society, 2021, vol. 41, No. 13, pp. 6255–6266, DOI: 10.1016/j.jeurceramsoc.2021.05.053
---
The study was financially supported by the Russian Science Foundation, grant No. 25-19-00390, https://rscf.ru/project/25-19-00390

