Обзор литийионных конденсаторов
DOI:
https://doi.org/10.24160/0013-5380-2026-2-4-16Ключевые слова:
литийионный конденсатор, гибридное устройство энергетического хранения, анод, катод, электролит, технология прелитированияАннотация
Литийионные конденсаторы (ЛИК), появившиеся в качестве гибридных решений для хранения энергии вслед за традиционными двухслойными конденсаторами и литийионными батареями, оказали глубокое влияние на фундаментальные исследования и разработку приложений в области хранения энергии благодаря синергетической оптимизации мощности и энергетических показателей. Обладая выдающимися свойствами, такими как высокая удельная мощность, повышенная энергоемкость, исключительный срок службы, широкая адаптируемость к температурным условиям и низкие риски с точки зрения безопасности, ЛИК стимулировали широкие научные и практические исследования, направленные на выявление механизмов накопления энергии и изучение различных сценариев применения. В последние годы были достигнуты значительные успехи в области модификации электродных материалов и интеграции устройств на основе ЛИК, что заложило основу для изучения потенциала их применения в таких областях, как автомобили на новых энергетических ресурсах, железнодорожный транспорт и умные электросети. В статье систематизированы типичные материалы и технологии ЛИК с особым акцентом на электродные материалы, электролитные системы и процессы предварительного литиирования. На фоне политики "двойного использования углерода" дается перспектива будущих приоритетных направлений исследований и развития ЛИК в области перехода к твердотельной форме, предлагаются новые подходы для дальнейшего их практического применения и индустриализации.
Библиографические ссылки
1. Li B. et al. Electrode Materials, Electrolytes, and Challenges in Nonaqueous Lithium-Ion Capacitors. – Advanced Materials, 2018, vol. 30 (17), DOI: 10.1002/adma.201705670.
2. Naskar P. et al. Frontiers in Hybrid Ion Capacitors: A Review on Advanced Materials and Emerging Devices. – ChemElectroChem, 2021, vol. 8 (8), pp. 1393–1429, DOI: 10.1002/celc.202100029.
3. Soltani M., Beheshti S.H. A Comprehensive Review of Lithium-Ion Capacitor: Development, Modelling, Thermal Management and Applications. – Journal of Energy Storage, 2021, vol. 34, DOI: 10.1016/j.est.2020.102019.
4. Apparla N.K., Gopalakrishnan A., Sharma C.S. A Brief Review on Heteroatom-Doped Dual-Carbon Metal-Ion Hybrid Capacitors: The Role of Carbon Nanomaterials. – ACS Applied Nano Materials, 2024, vol. 7 (16), pp. 18676–18694, DOI: 10.1021/acsanm.4c01889.
5. Lamb J.J., Burheim O.S. Lithium-Ion Capacitors: A Review of Design and Active Materials. – Energies, 2021, vol. 14 (4), DOI: 10.3390/en14040979.
6. Eleri O.E., Lou F., Yu Z. Lithium-Ion Capacitors: A Review of Strategies toward Enhancing the Performance of the Activated Carbon Cathode. – Batteries, 2023, vol. 9 (11), DOI: 10.3390/batteries9110533.
7. Guo Z. et al. Battery-Type Lithium-Ion Hybrid Capacitors: Current Status and Future Perspectives. – Batteries, 2023, vol. 9 (2), DOI: 10.3390/batteries9020074.
8. Li J. et al. A Review on Flexible and Transparent Energy Storage System. – Materials, 2018, vol. 11(11), DOI: 10.3390/ma11112280.
9. Cui S., Riaz S., Wang K. Study on Lifetime Decline Prediction of Lithium-Ion Capacitors. – Energies, 2023, vol. 16 (22), DOI: 10. 3390/en16227557.
10. Pal R.K. et al. Modeling and Simulation of Phase Change Material-Based Passive and Hybrid Thermal Management Systems for Lithium-Ion Batteries: A Comprehensive Review. – Journal of Energy Storage, 2025, vol. 116, DOI: 10.1016/j.est.2025.116011.
11. Lee S.-H. et al. Expanded Graphite/Copper Oxide Composite Electrodes for Cell Kinetic Balancing of Lithium-Ion Capacitor. – Journal of Alloys and Compounds, 2020, vol. 829, DOI: 10.1016/j.jallcom.2020.154566.
12. Cao W. J. et al. The Effect of Lithium Loadings on Anode to the Voltage Drop During Charge and Discharge of Li-Ion Capacitors. – Journal of Power Sources, 2015, vol. 280, pp. 600–605, DOI: 10.1016/j.jpowsour.2015.01.102.
13. Zhang Y. et al. Regulation of the Cathode for Amphi-Charge Storage in a Redox Electrolyte for High-Energy Lithium-Ion Capacitors. – Chemical Communications, 2020, vol. 56 (84), pp. 12777–12780, DOI: 10.1039/d0cc04106h.
14. Chen J. et al. Recent Advances in Anode Materials for Sodium – and Potassium-Ion Hybrid Capacitors. – Current Opinion in Electrochemistry, 2019, vol. 18, DOI: 10.1016/j.coelec.2019.07.003.
15. Andezai A., Iroh J.O. Review: Overview of Organic Cathode Materials in Lithium-Ion Batteries and Supercapacitors. – Energies, 2025, vol. 18 (3), DOI: 10.3390/en18030582.
16. Cao W.J., Zheng J.P. Li-Ion Capacitors with Carbon Cathode and Hard Carbon/Stabilized Lithium Metal Powder Anode Electrodes. – Journal of Power Sources, 2012, vol. 213, pp. 180–185, DOI: 10.1016/j.jpowsour.2012.04.033.
17. Wang Y. et al. Electrochemical Stability of Graphene Cathode for High‐Voltage Lithium-Ion Capacitors. – Asia-Pacific Journal of Chemical Engineering, 2016, vol. 11 (3), pp. 407–414, DOI: 10.1002/apj.2001.
18. Tu F. et al. Porous Graphene as Cathode Material for Lithium-Ion Capacitor with High Electrochemical Performance. – Powder Technology, 2014, vol. 253, pp. 580–583, DOI: 10.1016/j.powtec.2013.12.008.
19. Liu X. et al. Structural Disorder Determines Capacitance in Nanoporous Carbons. – Science, 2024, vol. 384, pp. 321–325, DOI: 10.1126/science.adn6242.
20. Nasini U.B. et al. Phosphorous and Nitrogen Dual Heteroatom Doped Mesoporous Carbon Synthesized Via Microwave Method for Supercapacitor Application. – Journal of Power Sources, 2014, vol. 250, pp. 257–265, DOI: 10.1016/j.jpowsour.2013.11.014.
21. Liu H. et al. Self-Templating Synthesis of Mesoporous Carbon Cathode Materials for High-Performance Lithium-Ion Capacitors. – ChemSusChem, 2025, vol. 18 (3), DOI: 10.1002/cssc.202401365.
22. Shellikeri A. et al. Hybrid Lithium-Ion Capacitor with LiFePO4/AC Composite Cathode – Long Term Cycle Life Study, Rate Effect and Charge Sharing Analysis. – Journal of Power Sources, 2018, vol. 392, pp. 285–295, DOI: 10.1016/j.jpowsour.2018.05.002.
23. Zhao W. et al. High Mass Loading Pitch-Derived Porous Carbon Embedded in Carbon Nanotube Sponge for Lithium-Ion Capacitor Cathodes. – Carbon, 2025, vol. 235, DOI: 10.1016/j.carbon.2025.120059.
24. Tang X. et al. A Novel Lithium-Ion Hybrid Capacitor Based on an Aerogel-Like MXene Wrapped Fe2O3nanosphere Anode and a 3D Nitrogen Sulphur Dual-Doped Porous Carbon Cathode. – Materials Chemistry Frontiers, 2018, vol. 2 (10), pp. 1811–1821, DOI: 10.1039/c8qm00232k.
25. Li C. et al. Scalable Self-Propagating High-Temperature Synthesis of Graphene for Supercapacitors with Superior Power Density and Cyclic Stability. – Advanced Materials, 2017, vol. 29 (7), DOI: 10.1002/adma.201604690.
26. Karimi D. et al. A Comprehensive Review of Lithium-Ion Capacitor Technology: Theory, Development, Modeling, Thermal Management Systems, and Applications. – Molecules, 2022, vol. 27 (10), DOI: 10.3390/molecules27103119.
27. Yang J. et al. Carbonaceous Mesophase Spherule/Activated Carbon Composite as Anode Materials for Super Lithium-Ion Capacitors. – Journal of Central South University of Technology, 2011, vol. 18, pp. 972–977, DOI: 10.1007/s11771−011−0789−0.
28. Han C. et al. Nanostructured Anode Materials for Non‐Aqueous Lithium-Ion Hybrid Capacitors. – Energy & Environmental Materials, 2018, vol. 1 (2), pp. 75–87, DOI: 10.1002/eem2.12009.
29. Tan J.-Y. et al. Hollow Porous α-Fe2O3 Nanoparticles as Anode Materials for High-Performance Lithium-Ion Capacitors. – ACS Sustainable Chemistry & Engineering, 2021, vol. 9 (3), pp. 1180–1192, DOI: 10.1021/acssuschemeng.0c06650.
30. Yao F., Pham D.T., Lee Y.H. Carbon-Based Materials for Lithium-Ion Batteries, Electrochemical Capacitors, and Their Hybrid Devices. – ChemSusChem, 2015, vol. 8 (14), pp. 2284–2311, DOI: 10.1002/cssc.201403490.
31. Wang Z. et al. Surface-Modification of Graphite with N-Heterocyclic Conducting Polymers as High-Performance Anodes for Li-Ion Batteries. – Energy Storage Science and Technology, 2024, vol. 13 (8), pp. 2511–2518, DOI: 10.19799/j.cnki.2095-4239.2024.0152.
32. Zhang L. et al. A High-Rate and Ultrastable Anode for Lithium-Ion Capacitors Produced by Modifying Hard Carbon with Both Surface Oxidation and Intercalation. – New Carbon Materials, 2022, vol. 37 (5), pp. 1000–1010, DOI: 10.1016/s1872-5805(22)60632-2.
33. Luan Y. et al. Nitrogen and Phosphorus Dual-Doped Multilayer Graphene as Universal Anode for Full Carbon-Based Lithium and Potassium Ion Capacitors. – Nano-Micro Letters, 2019, vol. 11 (1), DOI: 10.1007/s40820-019-0260-6.
34. Zhao X. et al. High-Performance Lithium-Ion Capacitors Based on CoO-Graphene Composite Anode and Holey Carbon Nanolayer Cathode. – ACS Sustainable Chemistry & Engineering, 2019, vol. 7 (13), pp. 11275–11283, DOI: 10.1021/acssuschemeng.9b00641.
35. An Y.-B. et al. Improving Anode Performances of Lithium-Ion Capacitors Employing Carbon-Si Composites. – Rare Metals, 2019, vol. 38 (12), pp. 1113–1123, DOI: 10.1007/s12598-019-01328-w.
36. Ma Y. et al. Black Phosphorus Covalent Bonded by Metallic Antimony Toward High‐Energy Lithium-Ion Capacitors. – Advanced Energy Materials, 2024, vol. 14 (18), DOI: 10.1002/aenm.202304408.
37. Han P. et al. Lithium-ion Capacitors in Organic Electrolyte System: Scientific Problems, Material Development, and Key Technologies. – Advanced Energy Materials, 2018, vol. 8 (26), DOI: 10.1002/aenm.201801243.
38. Kreth F.A. et al. Enabling Fluorine‐Free Lithium‐ion Capacitors and Lithium‐Ion Batteries for High‐Temperature Applications by the Implementation of Lithium Bis(oxalato)Borate and Ethyl Isopropyl Sulfone as Electrolyte. – Advanced Energy Materials, 2024, vol. 14 (13), DOI: 10.1002/aenm.202303909.
39. Zhang P. et al. Research Progress of Gel Polymer Electrolytes for Lithium-ion Batteries. – Acta Polymerica Sinica, 2011, vol. 2, pp. 125–131, DOI: 10.3724/SP.J.1105.2011.10229.
40. Wieder F. et al. Electrolyte Distribution and Discharge Time – A Combined Study of X-ray Tomography and Electrical Measurements of a Commercially Available Lithium-ion Capacitor. – ECS Transactions, 2013, vol. 50, pp. 211–218, DOI: 10.1149/05330.0211ecst.
41. Borodin O. Challenges with Prediction of Battery Electrolyte Electrochemical Stability Window and Guiding the Electrode – Electrolyte Stabilization. – Current Opinion in Electrochemistry, 2019, vol. 13, pp. 86–93, DOI: 10.1016/j.coelec.2018.10.015.
42. Luo Z. et al. Investigation of a Difunctional Electrolyte Engineered for Capacitor Batteries. – ACS Appl. Energy Mater., 2025, vol. 8 (6), pp. 3663–3675, DOI: 10.1021/acsaem.4c03263.
43. Guo H. et al. Unifying Electrolyte Formulation and Electrode Nanoconfinement Design to Enable New Ion–Solvent Cointercalation Chemistries. – Energy & Environmental Science, 2024, vol. 17 (6), pp. 2100–2116, DOI: 10.1039/d3ee04350a.
44. Li M. et al. LiPF6/LiFSI Blend Salt Electrolyte for High-Power Lithium-Ion Batteries. – Chinese Journal of Power Sources, 2018, vol. 42 (1), pp. 12–15.
45. Meng F. et al. Electrolyte Technologies for High Performance Sodium-Ion Capacitors. – Frontiers in Chemistry, 2020, vol. 8, DOI: 10.3389/fchem.2020.00652.
46. Sead F.F. et al. Electrochemical Behavior of Carbon Quantum Dots as Electrolyte Additives for Enhanced Battery and Supercapacitor Performance. – Materials Technology, 2025, vol. 40 (1), DOI: 10.1080/ 10667857.2025.2500524.
47. Sun X. et al. Using a Boron-Based Anion Receptor Additive to Improve the Thermal Stability of LiPF6-Based Electrolyte for Lithium Batteries. – Electrochemical and Solid-State Letters, 2022, vol. 11 (5), DOI: 10.1149/1.1510321.
48. Sun X. et al. High-Performance Lithium-Ion Hybrid Capacitors with Pre-Lithiated Hard Carbon Anodes and Bifunctional Cathode Electrodes. – Journal of Power Sources, 2014, vol. 270, pp. 318–325, DOI: 10.1016/j.jpowsour.2014.07.146.
49. Sun X. et al. A Fast and Scalable Pre-Lithiation Approach for Practical Large-Capacity Lithium-ion Capacitors. – Journal of The Electrochemical Society, 2021, vol. 168 (11), DOI: 10.1149/1945-7111/ac38f7.
50. Sun C. et al. Molecularly Chemical Prelithiation of Soft Carbon Towards High-Performance Lithium-Ion Capacitors. – Journal of Energy Storage, 2022, vol. 56, DOI: 10.1016/j.est.2022.106009.
51. Jin L. et al. Progress and Perspectives on Pre-lithiation Technologies for Lithium-Ion Capacitors. – Energy & Environmental Science, 2020, vol. 13 (8), pp. 2341–2362, DOI: 10.1039/d0ee00807a.
52. Arnaiz M., Ajuria J. Pre‐Lithiation Strategies for Lithium-Ion Capacitors: Past, Present, and Future. – Batteries & Supercaps, 2021, vol. 4 (5), pp. 733–748, DOI: 10.1002/batt.202000328.
53. Jia C. et al. A High-Efficiency Pre-Lithiation Strategy for Li-Ion Capacitor Achieved by the Synergistic Effect of Pre-Lithiation and Solid Electrolyte Interface Film Modification. – Journal of Energy Storage, 2024, vol. 99, DOI: 10.1016/j.est.2024.113420.
54. Jiang J. M. et al. Recent Advances and Perspectives on Pre-Lithiation Strategies for Lithium‐ion Capacitors. – Rare Metals, 2022, vol. 41 (10), pp. 3322–3335, DOI: 10.1007/s12598-022-02050-w.
55. Ren Y., Li J., Guo J. Perforated Active Carbon and Pre-Lithiated Graphite Electrodes for High Performance Hybrid Lithium-ion Capacitors. – International Journal of Electrochemical Science, 2020, vol. 15 (3), pp. 2659–2666, DOI: 10.20964/2020.03.03.
56. Zhang J. et al. Pre-Lithiation Design and Lithium-Ion Intercalation Plateaus Utilization of Mesocarbon Microbeads Anode for Lithium-Ion Capacitors. – Electrochimica Acta, 2015, vol. 182, pp. 156–164, DOI: 10.1016/j.electacta.2015.09.074.
57. Park E. et al. Pre-Lithiated Carbon-Coated Si/SiOx Nano-spheres as a Negative Electrode Material for Advanced Lithium-Ion Capacitors. – Journal of Power Sources, 2019, vol. 440, DOI: 10.1016/j.jpowsour.2019.227094.
58. Sun C. et al. High-Efficiency Sacrificial Prelithiation of Lithium-Ion Capacitors with Superior Energy-Storage Performance. – Energy Storage Materials, 2020, vol. 24, pp. 160–166, DOI: 10.1016/j.ensm.2019.08.023.
59. Liu C. et al. High-Capacity Li3P Pre-Lithiation Agent Unlocks Superior Performance in Lithium-ion Capacitors. – Applied Surface Science, 2025, vol. 697, DOI: 10.1016/j.apsusc.2025.163012.
60. Li J. et al. Pre-Lithiated Mesocarbon Microbeads Anode and Bifunctional Cathode for High Performance Hybrid Lithium-Ion Capacitors. – International Journal of Electrochemical Science, 2017, vol. 12 (4), pp. 3212–3220, DOI: 10.20964/2017.04.59.
61. Su K. et al. A Review: Pre‐lithiation Strategies Based on Cathode Sacrificial Lithium Salts for Lithium-Ion Capacitors. – Energy & Environmental Materials, 2023, vol. 6 (6), DOI: 10.1002/eem2.12506.
62. Al-Zareer M., Dincer I., Rosen M.A. A Review of Novel Thermal Management Systems for Batteries. – International Journal of Energy Research, 2018, vol. 42 (10), pp. 3182–3205, DOI: 10.1002/er.4095.
63. Habib A.K.M.A. et al. Lithium-Ion Battery Management System for Electric Vehicles: Constraints, Challenges, and Recommendations. – Batteries, 2023, vol. 9 (3), DOI: 10.3390/batteries9030152.
64. Liu K. et al. Adaptive Battery Thermal Management Systems in Unsteady Thermal Application Contexts. – Journal of Energy Chemistry, 2024, vol. 97, pp. 650–668, DOI: 10.1016/j.jechem.2024.07.004.
Поступила в редакцию [18.12.2025]
#
1. Li B. et al. Electrode Materials, Electrolytes, and Challenges in Nonaqueous Lithium-Ion Capacitors. – Advanced Materials, 2018, vol. 30 (17), DOI: 10.1002/adma.201705670.
2. Naskar P. et al. Frontiers in Hybrid Ion Capacitors: A Review on Advanced Materials and Emerging Devices. – ChemElectroChem, 2021, vol. 8 (8), pp. 1393–1429, DOI: 10.1002/celc.202100029.
3. Soltani M., Beheshti S.H. A Comprehensive Review of Lithium-Ion Capacitor: Development, Modelling, Thermal Management and Applications. – Journal of Energy Storage, 2021, vol. 34, DOI: 10.1016/j.est.2020.102019.
4. Apparla N.K., Gopalakrishnan A., Sharma C.S. A Brief Review on Heteroatom-Doped Dual-Carbon Metal-Ion Hybrid Capacitors: The Role of Carbon Nanomaterials. – ACS Applied Nano Materials, 2024, vol. 7 (16), pp. 18676–18694, DOI: 10.1021/acsanm.4c01889.
5. Lamb J.J., Burheim O.S. Lithium-Ion Capacitors: A Review of Design and Active Materials. – Energies, 2021, vol. 14 (4), DOI: 10.3390/en14040979.
6. Eleri O.E., Lou F., Yu Z. Lithium-Ion Capacitors: A Review of Strategies toward Enhancing the Performance of the Activated Carbon Cathode. – Batteries, 2023, vol. 9 (11), DOI: 10.3390/batteries9110533.
7. Guo Z. et al. Battery-Type Lithium-Ion Hybrid Capacitors: Current Status and Future Perspectives. – Batteries, 2023, vol. 9 (2), DOI: 10.3390/batteries9020074.
8. Li J. et al. A Review on Flexible and Transparent Energy Storage System. – Materials, 2018, vol. 11(11), DOI: 10.3390/ma11112280.
9. Cui S., Riaz S., Wang K. Study on Lifetime Decline Prediction of Lithium-Ion Capacitors. – Energies, 2023, vol. 16 (22), DOI: 10.3390/en16227557.
10. Pal R.K. et al. Modeling and Simulation of Phase Change Material-Based Passive and Hybrid Thermal Management Systems for Lithium-Ion Batteries: A Comprehensive Review. – Journal of Energy Storage, 2025, vol. 116, DOI: 10.1016/j.est.2025.116011.
11. Lee S.-H. et al. Expanded Graphite/Copper Oxide Composite Electrodes for Cell Kinetic Balancing of Lithium-Ion Capacitor. – Journal of Alloys and Compounds, 2020, vol. 829, DOI: 10.1016/j.jallcom.2020.154566.
12. Cao W. J. et al. The Effect of Lithium Loadings on Anode to the Voltage Drop During Charge and Discharge of Li-Ion Capacitors. – Journal of Power Sources, 2015, vol. 280, pp. 600–605, DOI: 10.1016/j.jpowsour.2015.01.102.
13. Zhang Y. et al. Regulation of the Cathode for Amphi-Charge Storage in a Redox Electrolyte for High-Energy Lithium-Ion Capacitors. – Chemical Communications, 2020, vol. 56 (84), pp. 12777–12780, DOI: 10.1039/d0cc04106h.
14. Chen J. et al. Recent Advances in Anode Materials for Sodium – and Potassium-Ion Hybrid Capacitors. – Current Opinion in Electrochemistry, 2019, vol. 18, DOI: 10.1016/j.coelec.2019.07.003.
15. Andezai A., Iroh J.O. Review: Overview of Organic Cathode Materials in Lithium-Ion Batteries and Supercapacitors. – Energies, 2025, vol. 18 (3), DOI: 10.3390/en18030582.
16. Cao W.J., Zheng J.P. Li-Ion Capacitors with Carbon Cathode and Hard Carbon/Stabilized Lithium Metal Powder Anode Electrodes. – Journal of Power Sources, 2012, vol. 213, pp. 180–185, DOI: 10.1016/j.jpowsour.2012.04.033.
17. Wang Y. et al. Electrochemical Stability of Graphene Cathode for High‐Voltage Lithium-Ion Capacitors. – Asia-Pacific Journal of Chemical Engineering, 2016, vol. 11 (3), pp. 407–414, DOI: 10.1002/apj.2001.
18. Tu F. et al. Porous Graphene as Cathode Material for Lithium-Ion Capacitor with High Electrochemical Performance. – Powder Technology, 2014, vol. 253, pp. 580–583, DOI: 10.1016/j.powtec.2013.12.008.
19. Liu X. et al. Structural Disorder Determines Capacitance in Nanoporous Carbons. – Science, 2024, vol. 384, pp. 321–325, DOI: 10.1126/science.adn6242.
20. Nasini U.B. et al. Phosphorous and Nitrogen Dual Heteroatom Doped Mesoporous Carbon Synthesized Via Microwave Method for Supercapacitor Application. – Journal of Power Sources, 2014, vol. 250, pp. 257–265, DOI: 10.1016/j.jpowsour.2013.11.014.
21. Liu H. et al. Self-Templating Synthesis of Mesoporous Carbon Cathode Materials for High-Performance Lithium-Ion Capacitors. – ChemSusChem, 2025, vol. 18 (3), DOI: 10.1002/cssc.202401365.
22. Shellikeri A. et al. Hybrid Lithium-Ion Capacitor with LiFePO4/AC Composite Cathode – Long Term Cycle Life Study, Rate Effect and Charge Sharing Analysis. – Journal of Power Sources, 2018, vol. 392, pp. 285–295, DOI: 10.1016/j.jpowsour.2018.05.002.
23. Zhao W. et al. High Mass Loading Pitch-Derived Porous Carbon Embedded in Carbon Nanotube Sponge for Lithium-Ion Capacitor Cathodes. – Carbon, 2025, vol. 235, DOI: 10.1016/j.carbon.2025.120059.
24. Tang X. et al. A Novel Lithium-Ion Hybrid Capacitor Based on an Aerogel-Like MXene Wrapped Fe2O3 Nanosphere Anode and a 3D Nitrogen Sulphur Dual-Doped Porous Carbon Cathode. – Materials Chemistry Frontiers, 2018, vol. 2 (10), pp. 1811–1821, DOI: 10.1039/c8qm00232k.
25. Li C. et al. Scalable Self-Propagating High-Temperature Synthesis of Graphene for Supercapacitors with Superior Power Density and Cyclic Stability. – Advanced Materials, 2017, vol. 29 (7), DOI: 10.1002/adma.201604690.
26. Karimi D. et al. A Comprehensive Review of Lithium-Ion Capacitor Technology: Theory, Development, Modeling, Thermal Management Systems, and Applications. – Molecules, 2022, vol. 27 (10), DOI: 10.3390/molecules27103119.
27. Yang J. et al. Carbonaceous Mesophase Spherule/Activated Carbon Composite as Anode Materials for Super Lithium-Ion Capacitors. – Journal of Central South University of Technology, 2011, vol. 18, pp. 972–977, DOI: 10.1007/s11771−011−0789−0.
28. Han C. et al. Nanostructured Anode Materials for Non‐Aqueous Lithium-Ion Hybrid Capacitors. – Energy & Environmental Materials, 2018, vol. 1 (2), pp. 75–87, DOI: 10.1002/eem2.12009.
29. Tan J.-Y. et al. Hollow Porous α-Fe2O3 Nanoparticles as Anode Materials for High-Performance Lithium-Ion Capacitors. – ACS Sustainable Chemistry & Engineering, 2021, vol. 9 (3), pp. 1180–1192, DOI: 10.1021/acssuschemeng.0c06650.
30. Yao F., Pham D.T., Lee Y.H. Carbon-Based Materials for Lithium-Ion Batteries, Electrochemical Capacitors, and Their Hybrid Devices. – ChemSusChem, 2015, vol. 8 (14), pp. 2284–2311, DOI: 10.1002/cssc.201403490.
31. Wang Z. et al. Surface-Modification of Graphite with N-Heterocyclic Conducting Polymers as High-Performance Anodes for Li-Ion Batteries. – Energy Storage Science and Technology, 2024, vol. 13 (8), pp. 2511–2518, DOI: 10.19799/j.cnki.2095-4239.2024.0152.
32. Zhang L. et al. A High-Rate and Ultrastable Anode for Lithium-Ion Capacitors Produced by Modifying Hard Carbon with Both Surface Oxidation and Intercalation. – New Carbon Materials, 2022, vol. 37 (5), pp. 1000–1010, DOI: 10.1016/s1872-5805(22)60632-2.
33. Luan Y. et al. Nitrogen and Phosphorus Dual-Doped Multilayer Graphene as Universal Anode for Full Carbon-Based Lithium and Potassium Ion Capacitors. – Nano-Micro Letters, 2019, vol. 11 (1), DOI: 10.1007/s40820-019-0260-6.
34. Zhao X. et al. High-Performance Lithium-Ion Capacitors Based on CoO-Graphene Composite Anode and Holey Carbon Nanolayer Cathode. – ACS Sustainable Chemistry & Engineering, 2019, vol. 7 (13), pp. 11275–11283, DOI: 10.1021/acssuschemeng.9b00641.
35. An Y.-B. et al. Improving Anode Performances of Lithium-Ion Capacitors Employing Carbon-Si Composites. – Rare Metals, 2019, vol. 38 (12), pp. 1113–1123, DOI: 10.1007/s12598-019-01328-w.
36. Ma Y. et al. Black Phosphorus Covalent Bonded by Metallic Antimony Toward High‐Energy Lithium-Ion Capacitors. – Advanced Energy Materials, 2024, vol. 14 (18), DOI: 10.1002/aenm.202304408.
37. Han P. et al. Lithium-ion Capacitors in Organic Electrolyte System: Scientific Problems, Material Development, and Key Technologies. – Advanced Energy Materials, 2018, vol. 8 (26), DOI: 10.1002/aenm.201801243.
38. Kreth F.A. et al. Enabling Fluorine‐Free Lithium‐ion Capacitors and Lithium‐Ion Batteries for High‐Temperature Applications by the Implementation of Lithium Bis(oxalato)Borate and Ethyl Isopropyl Sulfone as Electrolyte. – Advanced Energy Materials, 2024, vol. 14 (13), DOI: 10.1002/aenm.202303909.
39. Zhang P. et al. Research Progress of Gel Polymer Electrolytes for Lithium-ion Batteries. – Acta Polymerica Sinica, 2011, vol. 2, pp. 125–131, DOI: 10.3724/SP.J.1105.2011.10229.
40. Wieder F. et al. Electrolyte Distribution and Discharge Time – A Combined Study of X-ray Tomography and Electrical Measurements of a Commercially Available Lithium-ion Capacitor. – ECS Transactions, 2013, vol. 50, pp. 211–218, DOI: 10.1149/05330.0211ecst.
41. Borodin O. Challenges with Prediction of Battery Electrolyte Electrochemical Stability Window and Guiding the Electrode – Electrolyte Stabilization. – Current Opinion in Electrochemistry, 2019, vol. 13, pp. 86–93, DOI: 10.1016/j.coelec.2018.10.015.
42. Luo Z. et al. Investigation of a Difunctional Electrolyte Engineered for Capacitor Batteries. – ACS Appl. Energy Mater., 2025, vol. 8 (6), pp. 3663–3675, DOI: 10.1021/acsaem.4c03263.
43. Guo H. et al. Unifying Electrolyte Formulation and Electrode Nanoconfinement Design to Enable New Ion–Solvent Cointercalation Chemistries. – Energy & Environmental Science, 2024, vol. 17 (6), pp. 2100–2116, DOI: 10.1039/d3ee04350a.
44. Li M. et al. LiPF6 /LiFSI Blend Salt Electrolyte for High-Power Lithium-Ion Batteries. – Chinese Journal of Power Sources, 2018, vol. 42 (1), pp. 12–15.
45. Meng F. et al. Electrolyte Technologies for High Performance Sodium-Ion Capacitors. – Frontiers in Chemistry, 2020, vol. 8, DOI: 10.3389/fchem.2020.00652.
46. Sead F.F. et al. Electrochemical Behavior of Carbon Quantum Dots as Electrolyte Additives for Enhanced Battery and Supercapacitor Performance. – Materials Technology, 2025, vol. 40 (1), DOI: 10.1080/10667857.2025.2500524.
47. Sun X. et al. Using a Boron-Based Anion Receptor Additive to Improve the Thermal Stability of LiPF6-Based Electrolyte for Lithium Batteries. – Electrochemical and Solid-State Letters, 2022, vol. 11 (5), DOI: 10.1149/1.1510321.
48. Sun X. et al. High-Performance Lithium-Ion Hybrid Capacitors with Pre-Lithiated Hard Carbon Anodes and Bifunctional Cathode Electrodes. – Journal of Power Sources, 2014, vol. 270, pp. 318–325, DOI: 10.1016/j.jpowsour.2014.07.146.
49. Sun X. et al. A Fast and Scalable Pre-Lithiation Approach for Practical Large-Capacity Lithium-ion Capacitors. – Journal of The Elec-trochemical Society, 2021, vol. 168 (11), DOI: 10.1149/1945-7111/ac38f7.
50. Sun C. et al. Molecularly Chemical Prelithiation of Soft Carbon Towards High-Performance Lithium-Ion Capacitors. – Journal of Energy Storage, 2022, vol. 56, DOI: 10.1016/j.est.2022.106009.
51. Jin L. et al. Progress and Perspectives on Pre-lithiation Technologies for Lithium-Ion Capacitors. – Energy & Environmental Science, 2020, vol. 13 (8), pp. 2341–2362, DOI: 10.1039/d0ee00807a.
52. Arnaiz M., Ajuria J. Pre‐Lithiation Strategies for Lithium-Ion Capacitors: Past, Present, and Future. – Batteries & Supercaps, 2021, vol. 4 (5), pp. 733–748, DOI: 10.1002/batt.202000328.
53. Jia C. et al. A High-Efficiency Pre-Lithiation Strategy for Li-Ion Capacitor Achieved by the Synergistic Effect of Pre-Lithiation and Solid Electrolyte Interface Film Modification. – Journal of Energy Storage, 2024, vol. 99, DOI: 10.1016/j.est.2024.113420.
54. Jiang J. M. et al. Recent Advances and Perspectives on Pre-Lithiation Strategies for Lithium‐ion Capacitors. – Rare Metals, 2022, vol. 41 (10), pp. 3322–3335, DOI: 10.1007/s12598-022-02050-w.
55. Ren Y., Li J., Guo J. Perforated Active Carbon and Pre-Lithiated Graphite Electrodes for High Performance Hybrid Lithium-ion Capacitors. – International Journal of Electrochemical Science, 2020, vol. 15 (3), pp. 2659–2666, DOI: 10.20964/2020.03.03.
56. Zhang J. et al. Pre-Lithiation Design and Lithium-Ion Intercalation Plateaus Utilization of Mesocarbon Microbeads Anode for Lithium-Ion Capacitors. – Electrochimica Acta, 2015, vol. 182, pp. 156–164, DOI: 10.1016/j.electacta.2015.09.074.
57. Park E. et al. Pre-Lithiated Carbon-Coated Si/SiOx Nanospheres as a Negative Electrode Material for Advanced Lithium-Ion Capacitors. – Journal of Power Sources, 2019, vol. 440, DOI: 10.1016/j.jpowsour.2019.227094.
58. Sun C. et al. High-Efficiency Sacrificial Prelithiation of Lithium-Ion Capacitors with Superior Energy-Storage Performance. – Energy Storage Materials, 2020, vol. 24, pp. 160–166, DOI: 10.1016/j.ensm.2019.08.023.
59. Liu C. et al. High-Capacity Li3P Pre-Lithiation Agent Unlocks Superior Performance in Lithium-ion Capacitors. – Applied Surface Science, 2025, vol. 697, DOI: 10.1016/j.apsusc.2025.163012.
60. Li J. et al. Pre-Lithiated Mesocarbon Microbeads Anode and Bifunctional Cathode for High Performance Hybrid Lithium-Ion Capacitors. – International Journal of Electrochemical Science, 2017, vol. 12 (4), pp. 3212–3220, DOI: 10.20964/2017.04.59.
61. Su K. et al. A Review: Pre‐lithiation Strategies Based on Cathode Sacrificial Lithium Salts for Lithium-Ion Capacitors. – Energy & Environmental Materials, 2023, vol. 6 (6), DOI: 10.1002/eem2.12506.
62. Al-Zareer M., Dincer I., Rosen M.A. A Review of Novel Thermal Management Systems for Batteries. – International Journal of Energy Research, 2018, vol. 42 (10), pp. 3182–3205, DOI: 10.1002/er.4095.
63. Habib A.K.M.A. et al. Lithium-Ion Battery Management System for Electric Vehicles: Constraints, Challenges, and Recommendations. – Batteries, 2023, vol. 9 (3), DOI: 10.3390/batte-ries9030152.
64. Liu K. et al. Adaptive Battery Thermal Management Systems in Unsteady Thermal Application Contexts. – Journal of Energy Chemistry, 2024, vol. 97, pp. 650–668, DOI: 10.1016/j.jechem.2024.07.004

