Обзор литийионных конденсаторов

Авторы

  • Шани ЛИ
  • Кай ВАН
  • Яньвэй МА

DOI:

https://doi.org/10.24160/0013-5380-2026-2-4-16

Ключевые слова:

литийионный конденсатор, гибридное устройство энергетического хранения, анод, катод, электролит, технология прелитирования

Аннотация

Литийионные конденсаторы (ЛИК), появившиеся в качестве гибридных решений для хранения энергии вслед за традиционными двухслойными конденсаторами и литийионными батареями, оказали глубокое влияние на фундаментальные исследования и разработку приложений в области хранения энергии благодаря синергетической оптимизации мощности и энергетических показателей. Обладая выдающимися свойствами, такими как высокая удельная мощность, повышенная энергоемкость, исключительный срок службы, широкая адаптируемость к температурным условиям и низкие риски с точки зрения безопасности, ЛИК стимулировали широкие научные и практические исследования, направленные на выявление механизмов накопления энергии и изучение различных сценариев применения. В последние годы были достигнуты значительные успехи в области модификации электродных материалов и интеграции устройств на основе ЛИК, что заложило основу для изучения потенциала их применения в таких областях, как автомобили на новых энергетических ресурсах, железнодорожный транспорт и умные электросети. В статье систематизированы типичные материалы и технологии ЛИК с особым акцентом на электродные материалы, электролитные системы и процессы предварительного литиирования. На фоне политики "двойного использования углерода" дается перспектива будущих приоритетных направлений исследований и развития ЛИК в области перехода к твердотельной форме, предлагаются новые подходы для дальнейшего их практического применения и индустриализации.

Биографии авторов

Шани ЛИ

аспирант, Институт электротехники, Китайская академия наук, Пекин, Китай.

Кай ВАН

PhD, профессор, Институт электротехники, Китайская академия наук, Пекин, Китай.

Яньвэй МА

PhD, профессор, Института электротехники, Китайская академия наук, Пекин, Китай

Библиографические ссылки

1. Li B. et al. Electrode Materials, Electrolytes, and Challenges in Nonaqueous Lithium-Ion Capacitors. – Advanced Materials, 2018, vol. 30 (17), DOI: 10.1002/adma.201705670.

2. Naskar P. et al. Frontiers in Hybrid Ion Capacitors: A Review on Advanced Materials and Emerging Devices. – ChemElectroChem, 2021, vol. 8 (8), pp. 1393–1429, DOI: 10.1002/celc.202100029.

3. Soltani M., Beheshti S.H. A Comprehensive Review of Lithium-Ion Capacitor: Development, Modelling, Thermal Management and Applications. – Journal of Energy Storage, 2021, vol. 34, DOI: 10.1016/j.est.2020.102019.

4. Apparla N.K., Gopalakrishnan A., Sharma C.S. A Brief Review on Heteroatom-Doped Dual-Carbon Metal-Ion Hybrid Capacitors: The Role of Carbon Nanomaterials. – ACS Applied Nano Materials, 2024, vol. 7 (16), pp. 18676–18694, DOI: 10.1021/acsanm.4c01889.

5. Lamb J.J., Burheim O.S. Lithium-Ion Capacitors: A Review of Design and Active Materials. – Energies, 2021, vol. 14 (4), DOI: 10.3390/en14040979.

6. Eleri O.E., Lou F., Yu Z. Lithium-Ion Capacitors: A Review of Strategies toward Enhancing the Performance of the Activated Carbon Cathode. – Batteries, 2023, vol. 9 (11), DOI: 10.3390/batteries9110533.

7. Guo Z. et al. Battery-Type Lithium-Ion Hybrid Capacitors: Current Status and Future Perspectives. – Batteries, 2023, vol. 9 (2), DOI: 10.3390/batteries9020074.

8. Li J. et al. A Review on Flexible and Transparent Energy Storage System. – Materials, 2018, vol. 11(11), DOI: 10.3390/ma11112280.

9. Cui S., Riaz S., Wang K. Study on Lifetime Decline Prediction of Lithium-Ion Capacitors. – Energies, 2023, vol. 16 (22), DOI: 10. 3390/en16227557.

10. Pal R.K. et al. Modeling and Simulation of Phase Change Material-Based Passive and Hybrid Thermal Management Systems for Lithium-Ion Batteries: A Comprehensive Review. – Journal of Energy Storage, 2025, vol. 116, DOI: 10.1016/j.est.2025.116011.

11. Lee S.-H. et al. Expanded Graphite/Copper Oxide Composite Electrodes for Cell Kinetic Balancing of Lithium-Ion Capacitor. – Journal of Alloys and Compounds, 2020, vol. 829, DOI: 10.1016/j.jallcom.2020.154566.

12. Cao W. J. et al. The Effect of Lithium Loadings on Anode to the Voltage Drop During Charge and Discharge of Li-Ion Capacitors. – Journal of Power Sources, 2015, vol. 280, pp. 600–605, DOI: 10.1016/j.jpowsour.2015.01.102.

13. Zhang Y. et al. Regulation of the Cathode for Amphi-Charge Storage in a Redox Electrolyte for High-Energy Lithium-Ion Capacitors. – Chemical Communications, 2020, vol. 56 (84), pp. 12777–12780, DOI: 10.1039/d0cc04106h.

14. Chen J. et al. Recent Advances in Anode Materials for Sodium – and Potassium-Ion Hybrid Capacitors. – Current Opinion in Electrochemistry, 2019, vol. 18, DOI: 10.1016/j.coelec.2019.07.003.

15. Andezai A., Iroh J.O. Review: Overview of Organic Cathode Materials in Lithium-Ion Batteries and Supercapacitors. – Energies, 2025, vol. 18 (3), DOI: 10.3390/en18030582.

16. Cao W.J., Zheng J.P. Li-Ion Capacitors with Carbon Cathode and Hard Carbon/Stabilized Lithium Metal Powder Anode Electrodes. – Journal of Power Sources, 2012, vol. 213, pp. 180–185, DOI: 10.1016/j.jpowsour.2012.04.033.

17. Wang Y. et al. Electrochemical Stability of Graphene Cathode for High‐Voltage Lithium-Ion Capacitors. – Asia-Pacific Journal of Chemical Engineering, 2016, vol. 11 (3), pp. 407–414, DOI: 10.1002/apj.2001.

18. Tu F. et al. Porous Graphene as Cathode Material for Lithium-Ion Capacitor with High Electrochemical Performance. – Powder Technology, 2014, vol. 253, pp. 580–583, DOI: 10.1016/j.powtec.2013.12.008.

19. Liu X. et al. Structural Disorder Determines Capacitance in Nanoporous Carbons. – Science, 2024, vol. 384, pp. 321–325, DOI: 10.1126/science.adn6242.

20. Nasini U.B. et al. Phosphorous and Nitrogen Dual Heteroatom Doped Mesoporous Carbon Synthesized Via Microwave Method for Supercapacitor Application. – Journal of Power Sources, 2014, vol. 250, pp. 257–265, DOI: 10.1016/j.jpowsour.2013.11.014.

21. Liu H. et al. Self-Templating Synthesis of Mesoporous Carbon Cathode Materials for High-Performance Lithium-Ion Capacitors. – ChemSusChem, 2025, vol. 18 (3), DOI: 10.1002/cssc.202401365.

22. Shellikeri A. et al. Hybrid Lithium-Ion Capacitor with LiFePO4/AC Composite Cathode – Long Term Cycle Life Study, Rate Effect and Charge Sharing Analysis. – Journal of Power Sources, 2018, vol. 392, pp. 285–295, DOI: 10.1016/j.jpowsour.2018.05.002.

23. Zhao W. et al. High Mass Loading Pitch-Derived Porous Carbon Embedded in Carbon Nanotube Sponge for Lithium-Ion Capacitor Cathodes. – Carbon, 2025, vol. 235, DOI: 10.1016/j.carbon.2025.120059.

24. Tang X. et al. A Novel Lithium-Ion Hybrid Capacitor Based on an Aerogel-Like MXene Wrapped Fe2O3nanosphere Anode and a 3D Nitrogen Sulphur Dual-Doped Porous Carbon Cathode. – Materials Chemistry Frontiers, 2018, vol. 2 (10), pp. 1811–1821, DOI: 10.1039/c8qm00232k.

25. Li C. et al. Scalable Self-Propagating High-Temperature Synthesis of Graphene for Supercapacitors with Superior Power Density and Cyclic Stability. – Advanced Materials, 2017, vol. 29 (7), DOI: 10.1002/adma.201604690.

26. Karimi D. et al. A Comprehensive Review of Lithium-Ion Capacitor Technology: Theory, Development, Modeling, Thermal Management Systems, and Applications. – Molecules, 2022, vol. 27 (10), DOI: 10.3390/molecules27103119.

27. Yang J. et al. Carbonaceous Mesophase Spherule/Activated Carbon Composite as Anode Materials for Super Lithium-Ion Capacitors. – Journal of Central South University of Technology, 2011, vol. 18, pp. 972–977, DOI: 10.1007/s11771−011−0789−0.

28. Han C. et al. Nanostructured Anode Materials for Non‐Aqueous Lithium-Ion Hybrid Capacitors. – Energy & Environmental Materials, 2018, vol. 1 (2), pp. 75–87, DOI: 10.1002/eem2.12009.

29. Tan J.-Y. et al. Hollow Porous α-Fe2O3 Nanoparticles as Anode Materials for High-Performance Lithium-Ion Capacitors. – ACS Sustainable Chemistry & Engineering, 2021, vol. 9 (3), pp. 1180–1192, DOI: 10.1021/acssuschemeng.0c06650.

30. Yao F., Pham D.T., Lee Y.H. Carbon-Based Materials for Lithium-Ion Batteries, Electrochemical Capacitors, and Their Hybrid Devices. – ChemSusChem, 2015, vol. 8 (14), pp. 2284–2311, DOI: 10.1002/cssc.201403490.

31. Wang Z. et al. Surface-Modification of Graphite with N-Heterocyclic Conducting Polymers as High-Performance Anodes for Li-Ion Batteries. – Energy Storage Science and Technology, 2024, vol. 13 (8), pp. 2511–2518, DOI: 10.19799/j.cnki.2095-4239.2024.0152.

32. Zhang L. et al. A High-Rate and Ultrastable Anode for Lithium-Ion Capacitors Produced by Modifying Hard Carbon with Both Surface Oxidation and Intercalation. – New Carbon Materials, 2022, vol. 37 (5), pp. 1000–1010, DOI: 10.1016/s1872-5805(22)60632-2.

33. Luan Y. et al. Nitrogen and Phosphorus Dual-Doped Multilayer Graphene as Universal Anode for Full Carbon-Based Lithium and Potassium Ion Capacitors. – Nano-Micro Letters, 2019, vol. 11 (1), DOI: 10.1007/s40820-019-0260-6.

34. Zhao X. et al. High-Performance Lithium-Ion Capacitors Based on CoO-Graphene Composite Anode and Holey Carbon Nanolayer Cathode. – ACS Sustainable Chemistry & Engineering, 2019, vol. 7 (13), pp. 11275–11283, DOI: 10.1021/acssuschemeng.9b00641.

35. An Y.-B. et al. Improving Anode Performances of Lithium-Ion Capacitors Employing Carbon-Si Composites. – Rare Metals, 2019, vol. 38 (12), pp. 1113–1123, DOI: 10.1007/s12598-019-01328-w.

36. Ma Y. et al. Black Phosphorus Covalent Bonded by Metallic Antimony Toward High‐Energy Lithium-Ion Capacitors. – Advanced Energy Materials, 2024, vol. 14 (18), DOI: 10.1002/aenm.202304408.

37. Han P. et al. Lithium-ion Capacitors in Organic Electrolyte System: Scientific Problems, Material Development, and Key Technologies. – Advanced Energy Materials, 2018, vol. 8 (26), DOI: 10.1002/aenm.201801243.

38. Kreth F.A. et al. Enabling Fluorine‐Free Lithium‐ion Capacitors and Lithium‐Ion Batteries for High‐Temperature Applications by the Implementation of Lithium Bis(oxalato)Borate and Ethyl Isopropyl Sulfone as Electrolyte. – Advanced Energy Materials, 2024, vol. 14 (13), DOI: 10.1002/aenm.202303909.

39. Zhang P. et al. Research Progress of Gel Polymer Electrolytes for Lithium-ion Batteries. – Acta Polymerica Sinica, 2011, vol. 2, pp. 125–131, DOI: 10.3724/SP.J.1105.2011.10229.

40. Wieder F. et al. Electrolyte Distribution and Discharge Time – A Combined Study of X-ray Tomography and Electrical Measurements of a Commercially Available Lithium-ion Capacitor. – ECS Transactions, 2013, vol. 50, pp. 211–218, DOI: 10.1149/05330.0211ecst.

41. Borodin O. Challenges with Prediction of Battery Electrolyte Electrochemical Stability Window and Guiding the Electrode – Electrolyte Stabilization. – Current Opinion in Electrochemistry, 2019, vol. 13, pp. 86–93, DOI: 10.1016/j.coelec.2018.10.015.

42. Luo Z. et al. Investigation of a Difunctional Electrolyte Engineered for Capacitor Batteries. – ACS Appl. Energy Mater., 2025, vol. 8 (6), pp. 3663–3675, DOI: 10.1021/acsaem.4c03263.

43. Guo H. et al. Unifying Electrolyte Formulation and Electrode Nanoconfinement Design to Enable New Ion–Solvent Cointercalation Chemistries. – Energy & Environmental Science, 2024, vol. 17 (6), pp. 2100–2116, DOI: 10.1039/d3ee04350a.

44. Li M. et al. LiPF6/LiFSI Blend Salt Electrolyte for High-Power Lithium-Ion Batteries. – Chinese Journal of Power Sources, 2018, vol. 42 (1), pp. 12–15.

45. Meng F. et al. Electrolyte Technologies for High Performance Sodium-Ion Capacitors. – Frontiers in Chemistry, 2020, vol. 8, DOI: 10.3389/fchem.2020.00652.

46. Sead F.F. et al. Electrochemical Behavior of Carbon Quantum Dots as Electrolyte Additives for Enhanced Battery and Supercapacitor Performance. – Materials Technology, 2025, vol. 40 (1), DOI: 10.1080/ 10667857.2025.2500524.

47. Sun X. et al. Using a Boron-Based Anion Receptor Additive to Improve the Thermal Stability of LiPF6-Based Electrolyte for Lithium Batteries. – Electrochemical and Solid-State Letters, 2022, vol. 11 (5), DOI: 10.1149/1.1510321.

48. Sun X. et al. High-Performance Lithium-Ion Hybrid Capacitors with Pre-Lithiated Hard Carbon Anodes and Bifunctional Cathode Electrodes. – Journal of Power Sources, 2014, vol. 270, pp. 318–325, DOI: 10.1016/j.jpowsour.2014.07.146.

49. Sun X. et al. A Fast and Scalable Pre-Lithiation Approach for Practical Large-Capacity Lithium-ion Capacitors. – Journal of The Electrochemical Society, 2021, vol. 168 (11), DOI: 10.1149/1945-7111/ac38f7.

50. Sun C. et al. Molecularly Chemical Prelithiation of Soft Carbon Towards High-Performance Lithium-Ion Capacitors. – Journal of Energy Storage, 2022, vol. 56, DOI: 10.1016/j.est.2022.106009.

51. Jin L. et al. Progress and Perspectives on Pre-lithiation Technologies for Lithium-Ion Capacitors. – Energy & Environmental Science, 2020, vol. 13 (8), pp. 2341–2362, DOI: 10.1039/d0ee00807a.

52. Arnaiz M., Ajuria J. Pre‐Lithiation Strategies for Lithium-Ion Capacitors: Past, Present, and Future. – Batteries & Supercaps, 2021, vol. 4 (5), pp. 733–748, DOI: 10.1002/batt.202000328.

53. Jia C. et al. A High-Efficiency Pre-Lithiation Strategy for Li-Ion Capacitor Achieved by the Synergistic Effect of Pre-Lithiation and Solid Electrolyte Interface Film Modification. – Journal of Energy Storage, 2024, vol. 99, DOI: 10.1016/j.est.2024.113420.

54. Jiang J. M. et al. Recent Advances and Perspectives on Pre-Lithiation Strategies for Lithium‐ion Capacitors. – Rare Metals, 2022, vol. 41 (10), pp. 3322–3335, DOI: 10.1007/s12598-022-02050-w.

55. Ren Y., Li J., Guo J. Perforated Active Carbon and Pre-Lithiated Graphite Electrodes for High Performance Hybrid Lithium-ion Capacitors. – International Journal of Electrochemical Science, 2020, vol. 15 (3), pp. 2659–2666, DOI: 10.20964/2020.03.03.

56. Zhang J. et al. Pre-Lithiation Design and Lithium-Ion Intercalation Plateaus Utilization of Mesocarbon Microbeads Anode for Lithium-Ion Capacitors. – Electrochimica Acta, 2015, vol. 182, pp. 156–164, DOI: 10.1016/j.electacta.2015.09.074.

57. Park E. et al. Pre-Lithiated Carbon-Coated Si/SiOx Nano-spheres as a Negative Electrode Material for Advanced Lithium-Ion Capacitors. – Journal of Power Sources, 2019, vol. 440, DOI: 10.1016/j.jpowsour.2019.227094.

58. Sun C. et al. High-Efficiency Sacrificial Prelithiation of Lithium-Ion Capacitors with Superior Energy-Storage Performance. – Energy Storage Materials, 2020, vol. 24, pp. 160–166, DOI: 10.1016/j.ensm.2019.08.023.

59. Liu C. et al. High-Capacity Li3P Pre-Lithiation Agent Unlocks Superior Performance in Lithium-ion Capacitors. – Applied Surface Science, 2025, vol. 697, DOI: 10.1016/j.apsusc.2025.163012.

60. Li J. et al. Pre-Lithiated Mesocarbon Microbeads Anode and Bifunctional Cathode for High Performance Hybrid Lithium-Ion Capacitors. – International Journal of Electrochemical Science, 2017, vol. 12 (4), pp. 3212–3220, DOI: 10.20964/2017.04.59.

61. Su K. et al. A Review: Pre‐lithiation Strategies Based on Cathode Sacrificial Lithium Salts for Lithium-Ion Capacitors. – Energy & Environmental Materials, 2023, vol. 6 (6), DOI: 10.1002/eem2.12506.

62. Al-Zareer M., Dincer I., Rosen M.A. A Review of Novel Thermal Management Systems for Batteries. – International Journal of Energy Research, 2018, vol. 42 (10), pp. 3182–3205, DOI: 10.1002/er.4095.

63. Habib A.K.M.A. et al. Lithium-Ion Battery Management System for Electric Vehicles: Constraints, Challenges, and Recommendations. – Batteries, 2023, vol. 9 (3), DOI: 10.3390/batteries9030152.

64. Liu K. et al. Adaptive Battery Thermal Management Systems in Unsteady Thermal Application Contexts. – Journal of Energy Chemistry, 2024, vol. 97, pp. 650–668, DOI: 10.1016/j.jechem.2024.07.004.

Поступила в редакцию [18.12.2025]

#

1. Li B. et al. Electrode Materials, Electrolytes, and Challenges in Nonaqueous Lithium-Ion Capacitors. – Advanced Materials, 2018, vol. 30 (17), DOI: 10.1002/adma.201705670.

2. Naskar P. et al. Frontiers in Hybrid Ion Capacitors: A Review on Advanced Materials and Emerging Devices. – ChemElectroChem, 2021, vol. 8 (8), pp. 1393–1429, DOI: 10.1002/celc.202100029.

3. Soltani M., Beheshti S.H. A Comprehensive Review of Lithium-Ion Capacitor: Development, Modelling, Thermal Management and Applications. – Journal of Energy Storage, 2021, vol. 34, DOI: 10.1016/j.est.2020.102019.

4. Apparla N.K., Gopalakrishnan A., Sharma C.S. A Brief Review on Heteroatom-Doped Dual-Carbon Metal-Ion Hybrid Capacitors: The Role of Carbon Nanomaterials. – ACS Applied Nano Materials, 2024, vol. 7 (16), pp. 18676–18694, DOI: 10.1021/acsanm.4c01889.

5. Lamb J.J., Burheim O.S. Lithium-Ion Capacitors: A Review of Design and Active Materials. – Energies, 2021, vol. 14 (4), DOI: 10.3390/en14040979.

6. Eleri O.E., Lou F., Yu Z. Lithium-Ion Capacitors: A Review of Strategies toward Enhancing the Performance of the Activated Carbon Cathode. – Batteries, 2023, vol. 9 (11), DOI: 10.3390/batteries9110533.

7. Guo Z. et al. Battery-Type Lithium-Ion Hybrid Capacitors: Current Status and Future Perspectives. – Batteries, 2023, vol. 9 (2), DOI: 10.3390/batteries9020074.

8. Li J. et al. A Review on Flexible and Transparent Energy Storage System. – Materials, 2018, vol. 11(11), DOI: 10.3390/ma11112280.

9. Cui S., Riaz S., Wang K. Study on Lifetime Decline Prediction of Lithium-Ion Capacitors. – Energies, 2023, vol. 16 (22), DOI: 10.3390/en16227557.

10. Pal R.K. et al. Modeling and Simulation of Phase Change Material-Based Passive and Hybrid Thermal Management Systems for Lithium-Ion Batteries: A Comprehensive Review. – Journal of Energy Storage, 2025, vol. 116, DOI: 10.1016/j.est.2025.116011.

11. Lee S.-H. et al. Expanded Graphite/Copper Oxide Composite Electrodes for Cell Kinetic Balancing of Lithium-Ion Capacitor. – Journal of Alloys and Compounds, 2020, vol. 829, DOI: 10.1016/j.jallcom.2020.154566.

12. Cao W. J. et al. The Effect of Lithium Loadings on Anode to the Voltage Drop During Charge and Discharge of Li-Ion Capacitors. – Journal of Power Sources, 2015, vol. 280, pp. 600–605, DOI: 10.1016/j.jpowsour.2015.01.102.

13. Zhang Y. et al. Regulation of the Cathode for Amphi-Charge Storage in a Redox Electrolyte for High-Energy Lithium-Ion Capacitors. – Chemical Communications, 2020, vol. 56 (84), pp. 12777–12780, DOI: 10.1039/d0cc04106h.

14. Chen J. et al. Recent Advances in Anode Materials for Sodium – and Potassium-Ion Hybrid Capacitors. – Current Opinion in Electrochemistry, 2019, vol. 18, DOI: 10.1016/j.coelec.2019.07.003.

15. Andezai A., Iroh J.O. Review: Overview of Organic Cathode Materials in Lithium-Ion Batteries and Supercapacitors. – Energies, 2025, vol. 18 (3), DOI: 10.3390/en18030582.

16. Cao W.J., Zheng J.P. Li-Ion Capacitors with Carbon Cathode and Hard Carbon/Stabilized Lithium Metal Powder Anode Electrodes. – Journal of Power Sources, 2012, vol. 213, pp. 180–185, DOI: 10.1016/j.jpowsour.2012.04.033.

17. Wang Y. et al. Electrochemical Stability of Graphene Cathode for High‐Voltage Lithium-Ion Capacitors. – Asia-Pacific Journal of Chemical Engineering, 2016, vol. 11 (3), pp. 407–414, DOI: 10.1002/apj.2001.

18. Tu F. et al. Porous Graphene as Cathode Material for Lithium-Ion Capacitor with High Electrochemical Performance. – Powder Technology, 2014, vol. 253, pp. 580–583, DOI: 10.1016/j.powtec.2013.12.008.

19. Liu X. et al. Structural Disorder Determines Capacitance in Nanoporous Carbons. – Science, 2024, vol. 384, pp. 321–325, DOI: 10.1126/science.adn6242.

20. Nasini U.B. et al. Phosphorous and Nitrogen Dual Heteroatom Doped Mesoporous Carbon Synthesized Via Microwave Method for Supercapacitor Application. – Journal of Power Sources, 2014, vol. 250, pp. 257–265, DOI: 10.1016/j.jpowsour.2013.11.014.

21. Liu H. et al. Self-Templating Synthesis of Mesoporous Carbon Cathode Materials for High-Performance Lithium-Ion Capacitors. – ChemSusChem, 2025, vol. 18 (3), DOI: 10.1002/cssc.202401365.

22. Shellikeri A. et al. Hybrid Lithium-Ion Capacitor with LiFePO4/AC Composite Cathode – Long Term Cycle Life Study, Rate Effect and Charge Sharing Analysis. – Journal of Power Sources, 2018, vol. 392, pp. 285–295, DOI: 10.1016/j.jpowsour.2018.05.002.

23. Zhao W. et al. High Mass Loading Pitch-Derived Porous Carbon Embedded in Carbon Nanotube Sponge for Lithium-Ion Capacitor Cathodes. – Carbon, 2025, vol. 235, DOI: 10.1016/j.carbon.2025.120059.

24. Tang X. et al. A Novel Lithium-Ion Hybrid Capacitor Based on an Aerogel-Like MXene Wrapped Fe2O3 Nanosphere Anode and a 3D Nitrogen Sulphur Dual-Doped Porous Carbon Cathode. – Materials Chemistry Frontiers, 2018, vol. 2 (10), pp. 1811–1821, DOI: 10.1039/c8qm00232k.

25. Li C. et al. Scalable Self-Propagating High-Temperature Synthesis of Graphene for Supercapacitors with Superior Power Density and Cyclic Stability. – Advanced Materials, 2017, vol. 29 (7), DOI: 10.1002/adma.201604690.

26. Karimi D. et al. A Comprehensive Review of Lithium-Ion Capacitor Technology: Theory, Development, Modeling, Thermal Management Systems, and Applications. – Molecules, 2022, vol. 27 (10), DOI: 10.3390/molecules27103119.

27. Yang J. et al. Carbonaceous Mesophase Spherule/Activated Carbon Composite as Anode Materials for Super Lithium-Ion Capacitors. – Journal of Central South University of Technology, 2011, vol. 18, pp. 972–977, DOI: 10.1007/s11771−011−0789−0.

28. Han C. et al. Nanostructured Anode Materials for Non‐Aqueous Lithium-Ion Hybrid Capacitors. – Energy & Environmental Materials, 2018, vol. 1 (2), pp. 75–87, DOI: 10.1002/eem2.12009.

29. Tan J.-Y. et al. Hollow Porous α-Fe2O3 Nanoparticles as Anode Materials for High-Performance Lithium-Ion Capacitors. – ACS Sustainable Chemistry & Engineering, 2021, vol. 9 (3), pp. 1180–1192, DOI: 10.1021/acssuschemeng.0c06650.

30. Yao F., Pham D.T., Lee Y.H. Carbon-Based Materials for Lithium-Ion Batteries, Electrochemical Capacitors, and Their Hybrid Devices. – ChemSusChem, 2015, vol. 8 (14), pp. 2284–2311, DOI: 10.1002/cssc.201403490.

31. Wang Z. et al. Surface-Modification of Graphite with N-Heterocyclic Conducting Polymers as High-Performance Anodes for Li-Ion Batteries. – Energy Storage Science and Technology, 2024, vol. 13 (8), pp. 2511–2518, DOI: 10.19799/j.cnki.2095-4239.2024.0152.

32. Zhang L. et al. A High-Rate and Ultrastable Anode for Lithium-Ion Capacitors Produced by Modifying Hard Carbon with Both Surface Oxidation and Intercalation. – New Carbon Materials, 2022, vol. 37 (5), pp. 1000–1010, DOI: 10.1016/s1872-5805(22)60632-2.

33. Luan Y. et al. Nitrogen and Phosphorus Dual-Doped Multilayer Graphene as Universal Anode for Full Carbon-Based Lithium and Potassium Ion Capacitors. – Nano-Micro Letters, 2019, vol. 11 (1), DOI: 10.1007/s40820-019-0260-6.

34. Zhao X. et al. High-Performance Lithium-Ion Capacitors Based on CoO-Graphene Composite Anode and Holey Carbon Nanolayer Cathode. – ACS Sustainable Chemistry & Engineering, 2019, vol. 7 (13), pp. 11275–11283, DOI: 10.1021/acssuschemeng.9b00641.

35. An Y.-B. et al. Improving Anode Performances of Lithium-Ion Capacitors Employing Carbon-Si Composites. – Rare Metals, 2019, vol. 38 (12), pp. 1113–1123, DOI: 10.1007/s12598-019-01328-w.

36. Ma Y. et al. Black Phosphorus Covalent Bonded by Metallic Antimony Toward High‐Energy Lithium-Ion Capacitors. – Advanced Energy Materials, 2024, vol. 14 (18), DOI: 10.1002/aenm.202304408.

37. Han P. et al. Lithium-ion Capacitors in Organic Electrolyte System: Scientific Problems, Material Development, and Key Technologies. – Advanced Energy Materials, 2018, vol. 8 (26), DOI: 10.1002/aenm.201801243.

38. Kreth F.A. et al. Enabling Fluorine‐Free Lithium‐ion Capacitors and Lithium‐Ion Batteries for High‐Temperature Applications by the Implementation of Lithium Bis(oxalato)Borate and Ethyl Isopropyl Sulfone as Electrolyte. – Advanced Energy Materials, 2024, vol. 14 (13), DOI: 10.1002/aenm.202303909.

39. Zhang P. et al. Research Progress of Gel Polymer Electrolytes for Lithium-ion Batteries. – Acta Polymerica Sinica, 2011, vol. 2, pp. 125–131, DOI: 10.3724/SP.J.1105.2011.10229.

40. Wieder F. et al. Electrolyte Distribution and Discharge Time – A Combined Study of X-ray Tomography and Electrical Measurements of a Commercially Available Lithium-ion Capacitor. – ECS Transactions, 2013, vol. 50, pp. 211–218, DOI: 10.1149/05330.0211ecst.

41. Borodin O. Challenges with Prediction of Battery Electrolyte Electrochemical Stability Window and Guiding the Electrode – Electrolyte Stabilization. – Current Opinion in Electrochemistry, 2019, vol. 13, pp. 86–93, DOI: 10.1016/j.coelec.2018.10.015.

42. Luo Z. et al. Investigation of a Difunctional Electrolyte Engineered for Capacitor Batteries. – ACS Appl. Energy Mater., 2025, vol. 8 (6), pp. 3663–3675, DOI: 10.1021/acsaem.4c03263.

43. Guo H. et al. Unifying Electrolyte Formulation and Electrode Nanoconfinement Design to Enable New Ion–Solvent Cointercalation Chemistries. – Energy & Environmental Science, 2024, vol. 17 (6), pp. 2100–2116, DOI: 10.1039/d3ee04350a.

44. Li M. et al. LiPF6 /LiFSI Blend Salt Electrolyte for High-Power Lithium-Ion Batteries. – Chinese Journal of Power Sources, 2018, vol. 42 (1), pp. 12–15.

45. Meng F. et al. Electrolyte Technologies for High Performance Sodium-Ion Capacitors. – Frontiers in Chemistry, 2020, vol. 8, DOI: 10.3389/fchem.2020.00652.

46. Sead F.F. et al. Electrochemical Behavior of Carbon Quantum Dots as Electrolyte Additives for Enhanced Battery and Supercapacitor Performance. – Materials Technology, 2025, vol. 40 (1), DOI: 10.1080/10667857.2025.2500524.

47. Sun X. et al. Using a Boron-Based Anion Receptor Additive to Improve the Thermal Stability of LiPF6-Based Electrolyte for Lithium Batteries. – Electrochemical and Solid-State Letters, 2022, vol. 11 (5), DOI: 10.1149/1.1510321.

48. Sun X. et al. High-Performance Lithium-Ion Hybrid Capacitors with Pre-Lithiated Hard Carbon Anodes and Bifunctional Cathode Electrodes. – Journal of Power Sources, 2014, vol. 270, pp. 318–325, DOI: 10.1016/j.jpowsour.2014.07.146.

49. Sun X. et al. A Fast and Scalable Pre-Lithiation Approach for Practical Large-Capacity Lithium-ion Capacitors. – Journal of The Elec-trochemical Society, 2021, vol. 168 (11), DOI: 10.1149/1945-7111/ac38f7.

50. Sun C. et al. Molecularly Chemical Prelithiation of Soft Carbon Towards High-Performance Lithium-Ion Capacitors. – Journal of Energy Storage, 2022, vol. 56, DOI: 10.1016/j.est.2022.106009.

51. Jin L. et al. Progress and Perspectives on Pre-lithiation Technologies for Lithium-Ion Capacitors. – Energy & Environmental Science, 2020, vol. 13 (8), pp. 2341–2362, DOI: 10.1039/d0ee00807a.

52. Arnaiz M., Ajuria J. Pre‐Lithiation Strategies for Lithium-Ion Capacitors: Past, Present, and Future. – Batteries & Supercaps, 2021, vol. 4 (5), pp. 733–748, DOI: 10.1002/batt.202000328.

53. Jia C. et al. A High-Efficiency Pre-Lithiation Strategy for Li-Ion Capacitor Achieved by the Synergistic Effect of Pre-Lithiation and Solid Electrolyte Interface Film Modification. – Journal of Energy Storage, 2024, vol. 99, DOI: 10.1016/j.est.2024.113420.

54. Jiang J. M. et al. Recent Advances and Perspectives on Pre-Lithiation Strategies for Lithium‐ion Capacitors. – Rare Metals, 2022, vol. 41 (10), pp. 3322–3335, DOI: 10.1007/s12598-022-02050-w.

55. Ren Y., Li J., Guo J. Perforated Active Carbon and Pre-Lithiated Graphite Electrodes for High Performance Hybrid Lithium-ion Capacitors. – International Journal of Electrochemical Science, 2020, vol. 15 (3), pp. 2659–2666, DOI: 10.20964/2020.03.03.

56. Zhang J. et al. Pre-Lithiation Design and Lithium-Ion Intercalation Plateaus Utilization of Mesocarbon Microbeads Anode for Lithium-Ion Capacitors. – Electrochimica Acta, 2015, vol. 182, pp. 156–164, DOI: 10.1016/j.electacta.2015.09.074.

57. Park E. et al. Pre-Lithiated Carbon-Coated Si/SiOx Nanospheres as a Negative Electrode Material for Advanced Lithium-Ion Capacitors. – Journal of Power Sources, 2019, vol. 440, DOI: 10.1016/j.jpowsour.2019.227094.

58. Sun C. et al. High-Efficiency Sacrificial Prelithiation of Lithium-Ion Capacitors with Superior Energy-Storage Performance. – Energy Storage Materials, 2020, vol. 24, pp. 160–166, DOI: 10.1016/j.ensm.2019.08.023.

59. Liu C. et al. High-Capacity Li3P Pre-Lithiation Agent Unlocks Superior Performance in Lithium-ion Capacitors. – Applied Surface Science, 2025, vol. 697, DOI: 10.1016/j.apsusc.2025.163012.

60. Li J. et al. Pre-Lithiated Mesocarbon Microbeads Anode and Bifunctional Cathode for High Performance Hybrid Lithium-Ion Capacitors. – International Journal of Electrochemical Science, 2017, vol. 12 (4), pp. 3212–3220, DOI: 10.20964/2017.04.59.

61. Su K. et al. A Review: Pre‐lithiation Strategies Based on Cathode Sacrificial Lithium Salts for Lithium-Ion Capacitors. – Energy & Environmental Materials, 2023, vol. 6 (6), DOI: 10.1002/eem2.12506.

62. Al-Zareer M., Dincer I., Rosen M.A. A Review of Novel Thermal Management Systems for Batteries. – International Journal of Energy Research, 2018, vol. 42 (10), pp. 3182–3205, DOI: 10.1002/er.4095.

63. Habib A.K.M.A. et al. Lithium-Ion Battery Management System for Electric Vehicles: Constraints, Challenges, and Recommendations. – Batteries, 2023, vol. 9 (3), DOI: 10.3390/batte-ries9030152.

64. Liu K. et al. Adaptive Battery Thermal Management Systems in Unsteady Thermal Application Contexts. – Journal of Energy Chemistry, 2024, vol. 97, pp. 650–668, DOI: 10.1016/j.jechem.2024.07.004

Опубликован

2026-02-14

Выпуск

Раздел

Статьи