Обзор исследований гибридных сверхпроводящих энергетических транспортных линий, проводимых в Китае

  • Цинцюань ЦЮ
  • Ли СЯО
Ключевые слова: энергетические транспортные линии, сверхпроводящая передача электроэнергии, сверхпроводящий кабель, криогенное топливо

Аннотация

Передача потоков большой мощности на большие расстояния станет одной из главных задач энергетики в этом столетии. Увеличение потоков энергии может быть достигнуто за счет использования гибридных энергетических линий, где энергия передается химическими и электрическими носителями одновременно по одному каналу. Технология интегрированной передачи сверхпроводящей энергии/криогенного топлива является одним из потенциальных решений для обеспечения крупномасштабной передачи энергии на большие расстояния, которая быстро развивается в последние годы. В данной статье рассматривается исследовательская деятельность энергетических транспортных линий LH2 и LNG, а также обсуждаются тенденции их развития. Представлены результаты последних разработок гибридных линий энергопередачи в Китае. Рассмотрены подробности строительства сверхпроводящего энергопровода.

Биографии авторов

Цинцюань ЦЮ

PhD, профессор института электротехники, Китайская академия наук, Пекин, Китай

Ли СЯО

PhD, профессор института электротехники, Китайская академия наук; Университета Китайской академии наук, Пекин, Китай

Литература

1. Zhou X. The Challenges of Future Power Grid and its Demand Analysis for Superconducting Technology. – The 505th Xiangshan Conference, Beijing, Sep. 24–26, 2014.
2. Xiao L., Lin L. Status Quo and Trends of Superconducting Power Transmission Technology. – Transactions of China Electrotechnical Society, 2015, vol. 30, No. 7, pp. 1–9.
3. Qiu Q.Q., et al. Development Status and Trend of Superconducting DC Power Transmission Technology. –Southern Power System Technology, 2015, vol. 9, No. 12, pp. 11–16.
4. Zhang J., et al. Research Status and Key Technologies of Hybrid Energy Transfer Line. – Cryogenics & Superconductivity, 2020, 49(2), 1–7+31.
5. Zhang G.M., et al. Research Progress on the Superconducting DC Energy Pipeline. – Transactions of China Electrotechnical Society, 2021, vol. 36, No. 21, pp. 4389–4398, 4428.
6. Liu C.W., et al. Research Status and Development Trend of Hydrogen Energy Industry Chain and the Storage and Transportation Technologies. – Oil & Gas Storage and Transportation, 2022, vol. 41, No. 5, pp. 498–514.
7. Zhou S.W., et al. Development Status and Outlook of Natural Gas and LNG Industry in China. – China Offshore Oil and Gas, 2022, vol. 34, No.1, pp. 1–8.
8. Bartlit J.R., Edeskuty F.J., Hammel E.F. Multiple Use of Cryogenic Fluid Transmission Lines. – Proc. ICEC4, Eindhoven, May 24/26, 1972.
9. Haney D.E., Hammond R. Refrigeration and Heat Transfer in Superconducting Power Lines. – Stanford Report, April, 1975.
10. Ishigohka. T. A Feasibility Study on a World-Wide-Scale Superconducting Power Transmission System. –IEEE Transactions on Applied Superconductivity, 1995, vol. 5, No. 2, pp. 949–952.
11. Grant P.M. The Supercable: Dual Delivery of Chemical and Electric Power. – IEEE Transactions on Applied Superconductivity, 2005, vol. 15, No. 2, pp. 1810–1813.
12. Grant P.M. Cryo-Delivery Systems for the Co-Transmission of Chemical and Electrical Power. – Advances in Cryogenic Engineering: Transactions of the Cryogenic Engineering Conference, 2006, vol. 51, No. 1, pp. 291–301.
13. Yamada S., et al. Study on 1 GW Class Hybrid Energy Transfer Line of Hydrogen and Electricity. – Journal of Physics: Conference Series, 2008, vol. 97, No. 1, 012167.
14. Trevisani L., Fabbri M., Negrini F. Long Distance Renewable-Energy-Sources Power Transmission Using Hydrogen Cooled MgB2 Superconducting Line. – Cryogenics, 2007, vol. 47, No. 2, pp. 113–120.
15. Nakayama T., et al. Micro Power Grid System with SMES and Superconducting Cable Modules Cooled by Liquid Hydrogen. – IEEE Transactions on Applied Superconductivity, 2009, vol. 19, No. 3, pp. 2062–2065.
16. Vysotsky V., et al. Hybrid Energy Transfer Line with Liquid Hydrogen and Superconducting MgB2 Cable-First Experimental Proof of Concept. – IEEE Transactions on Applied Superconductivity, 2013, vol. 23, No. 3, DOI:10.1109/TASC.2013.2238574.
17. Vysotsky V., et al. New 30 m Flexible Hybrid Energy Transfer Line with Liquid Hydrogen and Superconducting MgB2 Cable-Development and Test Resultsю. – IEEE Transactions on Applied Superconductivity, 2015, vol. 25, No. 3, DOI:10.1109/TASC.2014.2361635.
18. Kostyuk V.V., et al. Cryogenic Design and Tests Results of 30 m Flexible Hybrid Energy Transfer Line with Liquid Hydrogen and Superconducting MgB2 Cable. – Cryogenics, 2015, vol. 66, pp. 34–42, DOI: 10.1016/j.cryogenics.2014.11.010.
19. Li Z.M., et al. Design and Experiment of Superconducting Cable Sample at the Temperature of Liquid Hydrogen. – Cryogenics & Superconductivity, 2018, vol. 46, No.1, pp. 54–58.
20. Qiu Q.Q., et al. Low Temperature Fuel Cooled Flame Retardant Superconducting Energy Pipeline. – CN201710442123.4, Jun.13, 2017.
21. Chen X.Y. A Hybrid Energy Transmission System of Liquid Hydrogen-Liquid Oxygen-Liquid Nitrogen-Superconducting DC Cable. – CN201510634275.5, Sep. 29, 2015.
22. Wang L.N., et al. Concept Design of 1GW LH2-LNG- Superconducting Energy Pipeline. – IEEE Transactions on Applied Superconductivity, 2019, vol. 29, No. 2, DOI:10.1109/TASC.2019. 2895461.
23. Jin J., et al. A Composite Superconducting Energy Pipeline and Its Characteristics. – Energy Reports, 2022, vol. 8, pp. 2072–2084, DOI: 0.1016/j.egyr.2022.01.126.
24. Geidl M., et al. Energy Hubs for the Future. – IEEE Power & Energy Magazine, 2007, vol. 5, No. 1, pp. 24–30, DOI:10.1109/MPAE.2007.264850.
25. Li Y.Z., et al. A Combined Long-Distance Transmission System for Liquefied Natural Gas and Electrical Energy Using High Temperature Superconducting. – CN201210118316.1, May 28, 2014. China.
26. Zhang Y., et al. Feasibility Analysis and Application Design of a Novel Long-Distance Natural Gas and Electricity Combined Transmission System. – Energy, 2014, vol. 77(C), pp. 710–719, DOI: 10.1016/j.energy.2014.09.059.
27. Qiu Q.Q., et al. Liquefied Natural Gas (LNG) Cooling CF4 Protected Superconducting Energy Pipeline. – CN201710724139.4, Aug. 22, 2017.
28. Qiu Q.Q., et al. A Superconducting Energy Pipeline with High Impact and Ablation Resistance. – CN201910354666.X, April 29, 2019.
29. Qiu Q.Q., et al. Design and Testing of a 10 kV/1 kA Superconducting Energy Pipeline Prototype for Electric Power and Liquid Natural Gas Transportation. – Superconductor Science &Technology, 2020, vol. 33, 095007.
30. Yamaguchi S., Watanabe H. Superconducting Power Transmission System and Cooling Method. –US20160372239, Dec. 22, 2016.
31. Ivanov Yu.V., et al. A Proposal of the Hybrid Energy Transfer Pipe. – Journal of Physics: Conference Series, 2021, vol.1857, DOI: 10.1088/1742-6596/1857/1/012006.
32. Chen X.Y. Liquified Shale Gas-Liquid Nitrogen-Superconducting DC Cable Composite Energy Transmission System. – CN201510634215.3, Sep. 29, 2017.
33. Chen X.Y., Chen Y. Design Method of Liquefied Shale Gas-Liquid Nitrogen-Superconducting DC Cable Composite Energy Pipeline. – CN201710833522.3, Sep.15, 2017.
34. Qiu Q.Q., et al. General Design of ±100 kV/1 kA Energy Pipeline for Electric Power and LNG Transportation. – Cryogenics, 2020, vol. 109(3), 103120, DOI:10.1016/j.cryogenics.2020.103120.
35. Yang Y.D., Zhang H.J. Superconducting DC Energy Pipeline: Realize the Cooperative Transmission of Electricity and Gas. – State Grid News, Aug. 03, 2021
---
Работа частично поддержана Национальной ключевой программой исследований и разработок Китая (грант № 2018YFB0904400), Национальным фондом естественных наук Китая (грант № 51721005), Ключевой исследовательской программой передовых наук Китайской академии наук (грант № QYZDJ-SSW-JSC025), Научным и технологическим проектом Государственной сетевой корпорации Китая (гранты № DG 71-16-004 и 52110418003H)
#
REFERENCES
1. Zhou X. The Challenges of Future Power Grid and its Demand Analysis for Superconducting Technology. – The 505th Xiangshan Conference, Beijing, Sep. 24–26, 2014.
2. Xiao L., Lin L. Status Quo and Trends of Superconducting Power Transmission Technology. – Transactions of China Electrotechnical Society, 2015, vol. 30, No. 7, pp. 1–9.
3. Qiu Q.Q., et al. Development Status and Trend of Super-conducting DC Power Transmission Technology. – Southern Power System Technology, 2015, vol. 9, No. 12, pp. 11–16.
4. Zhang J., et al. Research Status and Key Technologies of Hybrid Energy Transfer Line. – Cryogenics & Superconductivity, 2020, 49(2), 1–7+31.
5. Zhang G.M., et al. Research Progress on the Superconducting DC Energy Pipeline. – Transactions of China Electrotechnical Society, 2021, vol. 36, No. 21, pp. 4389–4398, 4428.
6. Liu C.W., et al. Research Status and Development Trend of Hydrogen Energy Industry Chain and the Storage and Transportation Technologies. – Oil & Gas Storage and Transportation, 2022, vol. 41, No. 5, pp. 498–514.
7. Zhou S.W., et al. Development Status and Outlook of Natural Gas and LNG Industry in China. – China Offshore Oil and Gas, 2022, vol. 34, No.1, pp. 1–8.
8. Bartlit J.R., Edeskuty F.J., Hammel E.F. Multiple Use of Cryogenic Fluid Transmission Lines. – Proc. ICEC4, Eindhoven, May 24/26, 1972.
9. Haney D.E., Hammond R. Refrigeration and Heat Transfer in Superconducting Power Lines. – Stanford Report, April, 1975.
10. Ishigohka. T. A Feasibility Study on a World-Wide-Scale Superconducting Power Transmission System. – IEEE Transactions on Applied Superconductivity, 1995, vol. 5, No. 2, pp. 949–952.
11. Grant P.M. The Supercable: Dual Delivery of Chemical and Electric Power. – IEEE Transactions on Applied Superconductivity, 2005, vol. 15, No. 2, pp. 1810–1813.
12. Grant P.M. Cryo-Delivery Systems for the Co-Transmission of Chemical and Electrical Power. – Advances in Cryogenic Engineering: Transactions of the Cryogenic Engineering Conference, 2006, vol. 51, No. 1, pp. 291–301.
13. Yamada S., et al. Study on 1 GW Class Hybrid Energy Transfer Line of Hydrogen and Electricity. – Journal of Physics: Conference Series, 2008, vol. 97, No. 1, 012167.
14. Trevisani L., Fabbri M., Negrini F. Long Distance Renewable-Energy-Sources Power Transmission Using Hydrogen Cooled MgB2 Superconducting Line. – Cryogenics, 2007, vol. 47, No. 2, pp. 113–120.
15. Nakayama T., et al. Micro Power Grid System with SMES and Superconducting Cable Modules Cooled by Liquid Hydrogen. – IEEE Transactions on Applied Superconductivity, 2009, vol. 19, No. 3, pp. 2062–2065.
16. Vysotsky V., et al. Hybrid Energy Transfer Line with Liquid Hydrogen and Superconducting MgB2 Cable-First Experimental Proof of Concept. – IEEE Transactions on Applied Superconductivity, 2013, vol. 23, No. 3, DOI:10.1109/TASC.2013.2238574.
17. Vysotsky V., et al. New 30 m Flexible Hybrid Energy Transfer Line with Liquid Hydrogen and Superconducting MgB2 Cable-Development and Test Resultsю. – IEEE Transactions on Applied Superconductivity, 2015, vol. 25, No. 3, DOI:10.1109/TASC. 2014.2361635.
18. Kostyuk V.V., et al. Cryogenic Design and Tests Results of 30 m Flexible Hybrid Energy Transfer Line with Liquid Hydrogen and Superconducting MgB2 Cable. – Cryogenics, 2015, vol. 66, pp. 34–42, DOI: 10.1016/j.cryogenics.2014.11.010ю
19. Li Z.M., et al. Design and Experiment of Superconducting Cable Sample at the Temperature of Liquid Hydrogen. – Cryogenics & Superconductivity, 2018, vol. 46, No.1, pp. 54–58.
20. Qiu Q.Q., et al. Low Temperature Fuel Cooled Flame Retardant Superconducting Energy Pipeline. – CN201710442123.4, Jun.13, 2017.
21. Chen X.Y. A Hybrid Energy Transmission System of Liquid Hydrogen-Liquid Oxygen-Liquid Nitrogen-Superconducting DC Cable. – CN201510634275.5, Sep. 29, 2015.
22. Wang L.N., et al. Concept Design of 1GW LH2-LNG- Superconducting Energy Pipeline. – IEEE Transactions on Applied Superconductivity, 2019, vol. 29, No. 2, DOI:10.1109/TASC.2019. 2895461.
23. Jin J., et al. A Composite Superconducting Energy Pipeline and Its Characteristics. – Energy Reports, 2022, vol. 8, pp. 2072–2084, DOI: 0.1016/j.egyr.2022.01.126.
24. Geidl M., et al. Energy Hubs for the Future. – IEEE Power & Energy Magazine, 2007, vol. 5, No. 1, pp. 24–30, DOI:10.1109/MPAE.2007.264850.
25. Li Y.Z., et al. A Combined Long-Distance Transmission System for Liquefied Natural Gas and Electrical Energy Using High Temperature Superconducting. – CN201210118316.1, May 28, 2014. China.
26. Zhang Y., et al. Feasibility Analysis and Application Design of a Novel Long-Distance Natural Gas and Electricity Combined Transmission System. – Energy, 2014, vol. 77(C), pp. 710–719, DOI: 10.1016/j.energy.2014.09.059.
27. Qiu Q.Q., et al. Liquefied Natural Gas (LNG) Cooling CF4 Protected Superconducting Energy Pipeline. – CN201710724139.4, Aug. 22, 2017.
28. Qiu Q.Q., et al. A Superconducting Energy Pipeline with High Impact and Ablation Resistance. – CN201910354666.X, April 29, 2019.
29. Qiu Q.Q., et al. Design and Testing of a 10 kV/1 kA Superconducting Energy Pipeline Prototype for Electric Power and Liquid Natural Gas Transportation. – Superconductor Science &Technology, 2020, vol. 33, 095007.
30. Yamaguchi S., Watanabe H. Superconducting Power Trans-mission System and Cooling Method. – US20160372239, Dec. 22, 2016.
31. Ivanov Yu.V., et al. A Proposal of the Hybrid Energy Transfer Pipe. – Journal of Physics: Conference Series, 2021, vol.1857, DOI:10.1088/1742-6596/1857/1/012006.
32. Chen X.Y. Liquified Shale Gas-Liquid Nitrogen-Super-conducting DC Cable Composite Energy Transmission System. – CN201510634215.3, Sep. 29, 2017.
33. Chen X.Y., Chen Y. Design Method of Liquefied Shale Gas-Liquid Nitrogen-Superconducting DC Cable Composite Energy Pipeline. – CN201710833522.3, Sep.15, 2017.
34. Qiu Q.Q., et al. General Design of ±100 kV/1 kA Energy Pipeline for Electric Power and LNG Transportation. – Cryogenics, 2020, vol. 109(3), 103120, DOI:10.1016/j.cryogenics.2020.103120.
35. Yang Y.D., Zhang H.J. Superconducting DC Energy Pipeline: Realize the Cooperative Transmission of Electricity and Gas. – State Grid News, Aug. 03, 2021
---
This work is partially supported by the National Key R&D Program of China (Grant No. 2018YFB0904400), the National Natural Science Foundation of China (Grant No. 51721005), the Key Research Program of Frontier Sciences of Chinese Academy of Sciences (Grant No. QYZDJ-SSW-JSC025), and the Science and Technology Project of State Grid Corporation of China (Grants No. DG71-16-004 and 52110418003H)
Опубликован
2022-10-27
Раздел
Статьи