Выбор настроек ПИД-регуляторов устройства автоматического управления генерацией в энергосистеме

  • Кахрамон Рахимович Аллаев
  • Тохир Фархадович Махмудов
Ключевые слова: электроэнергетическая система, автоматическое управление генерацией, ПИД-регулятор, алгоритм роя частиц, устойчивость

Аннотация

Интеграция объектов возобновляемой генерации в объединенные энергосистемы создаёт новые проблемы для поддержания надежной и безопасной инфраструктуры электроэнергетики. Необходимо расширять применение устройств автоматического управления генерацией, чтобы обеспечить возможность управления режимами энергосистем со значительной долей возобновляемых источников энергии. При этом устройства управления генерацией могут быть использованы не только для регулирования частоты, но и для поддержания межсетевого обмена мощности в связанных энергосистемах. В статье предложено применение одного из эволюционных методов оптимизации – метода роя частиц с целью поиска оптимальных настроек параметров пропорционально-интегрально-дифференцирующих (ПИД) регуляторов устройства автоматического управления генерацией. Дано математическое описание элементов электроэнергетической системы и приведена структурная схема автоматического управления генерации. Определены настроечные параметры ПИД-регуляторов устройства автоматического управления генерацией на основе метода роя частиц, а также нескольких классических методов оптимизации. Проведено сравнение результатов настройки ПИД-регуляторов, полученных различными методами в виде характеристик изменения частоты в частях энергосистемы, а также моментов эквивалентной паровой турбины при колебаниях мощности в одной из частей энергосистемы.

Биографии авторов

Кахрамон Рахимович Аллаев

академик Академии наук Республики Узбекистан, доктор техн. наук, профессор кафедры «Электрические станции, сети и системы», Ташкентский государственный технический университет имени Ислама Каримова, Ташкент, Республика Узбекистан.

Тохир Фархадович Махмудов

PhD, доцент кафедры «Электрические станции, сети и системы», Ташкентский государственный технический университет имени Ислама Каримова, Ташкент, Республика Узбекистан.

Литература

1. Guterres A. Carbon Neutrality by 2050: the World’s Most Urgent Mission [Электрон. ресурс], URL: https://www.un.org/sg/en/content/sg/articles/2020-12-11/carbon-neutrality-2050-the-world’s-most-urgent-mission (Дата обращения 10.10.2022).
2. Аллаев К.Р. Современная энергетика и перспективы ее развития / Под ред. акад. А.У. Салимова. Ташкент: Fan va tehnologiyаlar, 2021, 953 с.
3. Ullah K. et al. Automatic Generation Control Strategies in Conventional and Modern Power Systems: A Comprehensive Overview. – Energies, 2021, 14 (9), DOI:10.3390/en14092376.
4. Daood E.A., Bhardwaj A.K. Automatic Load Frequency Control of Three-Area Power System Using ANN Controller with Parallel AC/DC Link. – International Journal of Emerging Trends & Technology in Computer Science, 2016, vol. 5 (4), pp. 127–131.
5. Bevrani H., Ghosh A., Ledwich G. Renewable Energy Sources and Frequency Regulation: Survey and New Perspectives. – Renewable Power Generation, IET, 2010, vol. 4, No.5, pp. 438–457, DOI:10.1049/iet-rpg.2009.0049.
6. Sahab M.G., Toropov V.V., Gandomi A.H. A Review on Traditional and Modern Structural Optimization: Problems and Techniques. – Metaheuristic Applications in Structures and Infrastructures, 2013, pp. 25–47? DOI:10.1016/B978-0-12-398364-0.00002-4.
7. Arain B.A. et al. Design of PID Controller Based on PSO Algorithm and Its FPGA Synthesization. – International Journal of Engineering and Advanced Technology, 2018, vol. 8 (2), pp.201–207, DOI:10.13140/RG.2.2.12639.10400.
8. Al-Saedi W. et al. PSO Algorithm for an Optimal Power Controller in a Microgrid. – IOP Conference Series: Earth and Environmental Science, 2017, vol. 73 (1), DOI: 10.1088/1755-1315/ 73/1/012028.
9. Nurmatov O. Large Pumping Stations as Regulators of Power Systems Modes. – Rudenko International Conference “Methodological Problems in Reliability Study of Large Energy Systems”, 2020, vol. 216, DOI.:10.1051/e3sconf/202021601097.
10. Devi N.R., Biate R.L. A New Displacement Based PSO Algorithm Optimized PI Controller for Speed Control of a DC Mo-tor. – International Journal of Scientific & Engineering Research, 2016, vol. 7(4), pp. 1271–1277.
11. Аллаев K.Р., Мирзабаев A.M. Матричные методы анализа малых колебаний электрических систем. Ташкент: Fan va tehnologiyаlar, 2016, 432 c.
12. Abdul-Lateef W.E., Huayier A.F. Recovery Energy Residual in Servo Pneumatic Systems by Using PID Controller Based on Particle Swarm Optimization (PSO). – Journal of Mechanical Engineering Research and Developments, 2020, vol. 43, No. 7, pp. 279–291.
13. Chouket M., Abdelkafi A., Krich L. Tuned Controller’s Gain Tested under Grid Voltage Sags Using PSO Algorithm. – Journal of Electrical Power & Energy Systems, 2018, vol. 2(1), pp. 6–18, DOI: 10.26855/jepes.2018.07.001.
14. Bhatt V.K., Bhongade S. Design of PID Controller in Automatic Voltage Regulator (AVR) System Using PSO Technique. – International Journal of Engineering Research and Applications, 2013, vol. 3 (4), pp.1480–1485.
15. Redoy M.S. et al. Load Frequency Control of an Inter Connected Power System Using PSO Based PID Controller. – International Conference on Advancement in Electrical and Electronic Engineering, 2022, DOI: 10.1109/ICAEEE54957.2022.9836435.
16. Tousi S.M.A., Mostafanasab A., Teshnehlab M. Design of Self Tuning PID Controller Based on Competitional PSO. – 4th Conference on Swarm Intelligence and Evolutionary Computation, 2020, DOI: 10.1109/CSIEC49655.2020.9237318.
17. Panda A. et al. A PSO Based PIDF Controller for Multiarea Multisource System Incorporating Dish Stirling Solar System. – International Conference on Intelligent Computing and Control Systems, 2019, pp. 1458–1462, DOI: 10.1109/ICCS45141.2019.9065804.
18. Nie W. et al. A Tuning Method for PID Controller Parameters Based on Particle Swarm Optimization (PSO). – Chinese Automation Congress (CAC), 2020, pp. 497–501, DOI: 10.1109/CAC51589.2020.9327536.
19. Francis G.S. et al. A Novel PSO Based Fuzzy Controller for Robust Operation of Solid-State Transfer Switch and Fast Load Transfer in Power Systems. – IEEE Access, 2022, vol. 10, pp. 37369–37381, DOI: 10.1109/ACCESS.2022.3165021.
20. Veerasamy V. et al. A Hankel Matrix Based Reduced Order Model for Stability Analysis of Hybrid Power System Using PSO-GSA Optimized Cascade PI-PD Controller for Automatic Load Frequency Control. – IEEE Access, 2020, vol. 8, pp. 71422–71446, DOI: 10.1109/ACCESS.2020.2987387.
21. Patel R.B. et al. Enhancing Optimal Automatic Generation Control in a Multi-Area Power System with Diverse Energy Resources. – IEEE Transactions on Power Systems, 2019, vol. 34 (5), pp. 3465-3475, DOI: 10.1109/TPWRS.2019.2907614.
22. Simpson-Porco J.W. On Area Control Errors, Area Injection Errors, and Textbook Automatic Generation Control. – IEEE Transactions on Power Systems, 2021, vol. 36(1), pp. 557–560, DOI: 10.1109/TPWRS.2020.3029418.
#
1. Guterres A. Carbon Neutrality by 2050: the World’s Most Urgent Mission [Electron. resource], URL: https://www.un.org/sg/en/content/sg/articles/2020-12-11/carbon-neutrality-2050-the-world’s-most-urgent-mission (Date of appeal 10.10.2022).
2. Allaev К.R. Sovremennaya energetika i perspektivy ee razvitiya (Modern Energy and its Development Prospects) / By Ed. akad. A.U. Salimov. Tashkent: Fan va tehnologiyаlar, 2021, 953 p.
3. Ullah K. et al. Automatic Generation Control Strategies in Conventional and Modern Power Systems: A Comprehensive Over-view. – Energies, 2021, 14 (9), DOI:10.3390/en14092376.
4. Daood E.A., Bhardwaj A.K. Automatic Load Frequency Control of Three-Area Power System Using ANN Controller with Parallel AC/DC Link. – International Journal of Emerging Trends & Technology in Computer Science, 2016, vol. 5 (4), pp. 127–131.
5. Bevrani H., Ghosh A., Ledwich G. Renewable Energy Sources and Frequency Regulation: Survey and New Perspectives. – Renewable Power Generation, IET, 2010, vol. 4, No.5, pp. 438–457, DOI:10.1049/iet-rpg.2009.0049.
6. Sahab M.G., Toropov V.V., Gandomi A.H. A Review on Traditional and Modern Structural Optimization: Problems and Techniques. – Metaheuristic Applications in Structures and Infrastructures, 2013, pp. 25–47? DOI:10.1016/B978-0-12-398364-0.00002-4.
7. Arain B.A. et al. Design of PID Controller Based on PSO Algorithm and Its FPGA Synthesization. – International Journal of Engineering and Advanced Technology, 2018, vol. 8 (2), pp.201–207, DOI:10.13140/RG.2.2.12639.10400.
8. Al-Saedi W. et al. PSO Algorithm for an Optimal Power Controller in a Microgrid. – IOP Conference Series: Earth and Environmental Science, 2017, vol. 73 (1), DOI: 10.1088/1755-1315/73/1/012028.
9. Nurmatov O. Large Pumping Stations as Regulators of Power Systems Modes. – Rudenko International Conference “Methodological Problems in Reliability Study of Large Energy Systems”, 2020, vol. 216, DOI.:10.1051/e3sconf/202021601097.
10. Devi N.R., Biate R.L. A New Displacement Based PSO Algorithm Optimized PI Controller for Speed Control of a DC Motor. – International Journal of Scientific & Engineering Research, 2016, vol. 7(4), pp. 1271–1277.
11. Allaev К.R., Mirzabaev A.M. Matrichnye metody analiza malyh kolebaniy elektricheskih sistem (Matrix Methods for the Analysis of Small Oscillations of Electrical Systems). Ташкент: Fan va tehnologiyаlar, 2016, 432 p.
12. Abdul-Lateef W.E., Huayier A.F. Recovery Energy Residual in Servo Pneumatic Systems by Using PID Controller Based on Particle Swarm Optimization (PSO). – Journal of Mechanical Engineering Research and Developments, 2020, vol. 43, No. 7, pp. 279–291.
13. Chouket M., Abdelkafi A., Krich L. Tuned Controller’s Gain Tested under Grid Voltage Sags Using PSO Algorithm. – Journal of Electrical Power & Energy Systems, 2018, vol. 2(1), pp. 6–18, DOI: 10.26855/jepes.2018.07.001.
14. Bhatt V.K., Bhongade S. Design of PID Controller in Automatic Voltage Regulator (AVR) System Using PSO Technique. – International Journal of Engineering Research and Applications, 2013, vol. 3 (4), pp.1480–1485.
15. Redoy M.S. et al. Load Frequency Control of an Inter Connected Power System Using PSO Based PID Controller. – International Conference on Advancement in Electrical and Electronic Engineering, 2022, DOI: 10.1109/ICAEEE54957.2022.9836435.
16. Tousi S.M.A., Mostafanasab A., Teshnehlab M. Design of Self Tuning PID Controller Based on Competitional PSO. – 4th Conference on Swarm Intelligence and Evolutionary Computation, 2020, DOI: 10.1109/CSIEC49655.2020.9237318.
17. Panda A. et al. A PSO Based PIDF Controller for Multiarea Multisource System Incorporating Dish Stirling Solar System. – International Conference on Intelligent Computing and Control Systems, 2019, pp. 1458–1462, DOI: 10.1109/ICCS45141.2019.9065804.
18. Nie W. et al. A Tuning Method for PID Controller Parameters Based on Particle Swarm Optimization (PSO). – Chinese Automation Congress (CAC), 2020, pp. 497–501, DOI: 10.1109/CAC51589.2020.9327536.
19. Francis G.S. et al. A Novel PSO Based Fuzzy Controller for Robust Operation of Solid-State Transfer Switch and Fast Load Transfer in Power Systems. – IEEE Access, 2022, vol. 10, pp. 37369–37381, DOI: 10.1109/ACCESS.2022.3165021.
20. Veerasamy V. et al. A Hankel Matrix Based Reduced Order Model for Stability Analysis of Hybrid Power System Using PSO-GSA Optimized Cascade PI-PD Controller for Automatic Load Frequency Control. – IEEE Access, 2020, vol. 8, pp. 71422–71446, DOI: 10.1109/ACCESS.2020.2987387.
21. Patel R.B. et al. Enhancing Optimal Automatic Generation Control in a Multi-Area Power System with Diverse Energy Resources. – IEEE Transactions on Power Systems, 2019, vol. 34 (5), pp. 3465-3475, DOI: 10.1109/TPWRS.2019.2907614.
22. Simpson-Porco J.W. On Area Control Errors, Area Injection Errors, and Textbook Automatic Generation Control. – IEEE Transactions on Power Systems, 2021, vol. 36(1), pp. 557–560, DOI: 10.1109/TPWRS.2020.3029418.
Опубликован
2022-12-19
Раздел
Статьи