Способ управления электроприводами клети толстолистового стана в режиме асимметричной прокатки головной части раската

  • Вадим Рифхатович Храмшин
  • Марк Андреевич Зинченко
  • Борис Михайлович Логинов
  • Александр Сергеевич Карандаев
Ключевые слова: прокатная клеть, изгиб раската, электропривод, скорость, регулирование, способ, система управления, моделирование, экспериментальные исследования

Аннотация

Актуальной задачей при прокатке листов и толстых полос является формирование заданной кривизны головной части раската в форме «лыжи». Это осуществляется путем регулирования соотношения (рассогласования) скоростей электроприводов верхнего и нижнего валков горизонтальных клетей прокатных станов. Перечислены факторы, оказывающие влияние на кривизну изгиба головной части раската на выходе из клети. На примере толстолистового стана 5000 ПАО «Магнитогорский металлургический комбинат» выполнен анализ скоростей верхнего и нижнего валков в режиме формирования «лыжи». Основным недостатком существующей системы управления электроприводами является регулирование скоростей в функции разницы их текущих (актуальных) значений. Это приводит к выходу электропривода одного из валков на ограничение, потере управляемости двигателя и неконтролируемому изгибу раската. С целью устранения данного недостатка разработан способ управления с коррекцией скоростей электроприводов в функции разницы сигналов заданий на входах регуляторов скорости. Рассмотрена структура системы управления, реализующая этот способ. Представлены результаты имитационного моделирования режимов захвата с одновременным формированием «лыжи», рассмотрены аналогичные экспериментальные осциллограммы. Подтверждено лучшее совпадение скоростей электроприводов с их заданиями. Это обеспечивает повышение точности формирования кривизны при меньших заданиях «лыжи». Даны рекомендации по настройке системы управления.

Биографии авторов

Вадим Рифхатович Храмшин

доктор техн. наук, профессор, директор института энергетики и автоматизированных систем, Магнитогорский государственный технический университет им. Г.И. Носова, Магнитогорск, Россия.

Марк Андреевич Зинченко

аспирант Южно-Уральского государственного университета (национального исследовательского университета), Челябинск, Россия.

Борис Михайлович Логинов

кандидат. техн. наук, магистрант Южно-Уральского государственного университета (национального исследовательского университета), Челябинск, Россия

Александр Сергеевич Карандаев

доктор техн. наук, профессор, главный научный сотрудник Южно-Уральского государственного университета (национального исследовательского университета), Челябинск, Россия.

Литература

1. Anders D.A. et al. A Dimensional Analysis of Front-End Bending in Plate Rolling Applications. – Journal of Materials Processing Technology, 2012, No. 212(6), pp. 1387–1398, DOI:10.1016/j.jmat-protec.2012.02.005.
2. Гасияров В.Р. Способ повышения быстродействия системы управления электроприводами горизонтальной клети прокатного стана в режиме лыжеобразования. – Известия высших учебных заведений. Электромеханика, 2019, № 3, c. 33–43.
3. Пат. RU 2486974 C1. Способ ассиметричной прокатки передних концов толстых листов на реверсивных станах / В.М. Салганик и др., 2013.
4. Максимов В.М. и др. Экспериментальное исследование изгиба переднего конца раската при толстолистовой прокатке. – Труды XI Конгресса прокатчиков, Магнитогорск, 2017, c. 362–370.
5. Варшавский Е.А., Храпов М.А., Басуров В.М. Система автоматического управления изгибом переднего конца раската в черновой клети с индивидуальным приводом валков. – Труды XI Конгресса прокатчиков, Магнитогорск, 2017, c. 57–62.
6. Chikishev D.N., Pozhidaeva E.B. Analysis of the Causes of Vertical Bending of the Strip Front End at Hot Rolling on the Basis of Mathematical Modeling. – Izvestia Ferrous Metallurgy, 2016, vol. 59, No. 1, pp. 204–208, DOI:10.17073/0368-0797-2016-1-204-208.
7. Kiefer T., Kugi A. An Analytical Approach for Modelling Asymmetrical Hot Rolling of Heavy Plate. – Mathematical and Computer Modelling of Dynamical Systems, 2008, No. 14, pp. 249–267, DOI:10.1080/13873950701844915.
8. Minton J.J., Cawthorn C.J., Brambley E.J. Asymptotic Analysis of Asymmetric Thin Sheet Rolling. – International Journal of Mechanical Sciences, 2016, pp. 36–48, DOI:10.1016/j.ijmecsci. 2016.03.024.
9. Kawalek A. et al. Analysis of the Asymmetric Plate Rolling Process in the Finishing Stand 3600 – Archives of Metallurgy and Materials, 2014, vol. 59, iss. 4, DOI: 10.2478/amm-2014-0259.
10. Kiefer T., Kugi A. Model-Based Control of Front-End Bending in Hot Rolling Process. – The International Federation of Automatic Control Proceedings Volumes, 2008, DOI:10.3182/20080706-5-KR-1001.1396.
11. Максимов Е.А. Изменение геометрии концов полосы при несимметричной прокатке. – Оборудование, 2008, № 3, с. 50–53.
12. Песин А.М., Перехожих А.А., Пустовойтов Д.О. Моделирование подгиба переднего конца раската при толстолистовой прокатке. – Актуальные проблемы современной науки, техники и образования, 2012, т. 1, № 70, с. 217–219.
13. Карандаев А.С. и др. Совершенствование алгоритмов регулирования толщины и профиля зазора валков реверсивной клети толстолистового прокатного стана. – Известия высших учебных заведений. Электромеханика, 2019, т. 62, № 4, с. 53–64.
14. Ильясов Б.Г., Саитова Г.А. Системный подход к исследованию многосвязных систем автоматического управления на основе частотных методов. – Автоматика и телемеханика, 2013, № 3, с. 173–191.
15. Kuznetsov B.I., Nikitina T.B., Bovdui I.V. Structural-Parametric Synthesis of Rolling Mills Multi-Motor Electric Drives. – Electrical Engineering & Electromechanics, 2020, No. 5, pp. 25–30, DOI:10.20998/2074-272X.2020.5.04.
16. Kuznetsov B.I. et al. The Method of Limitation of Dynamic Loads of Nonlinear Electromechanical Systems under State Vector Robust Control. – Electrical Engineering & Electromechanics, 2022, No. 2, pp. 3–10. DOI:10.20998/2074-272X.2022.2.01.
17. Карандаев А.С. и др. Экспериментальное определение параметров двухмассовой электромеханической системы прокатного стана. – Известия высших учебных заведений. Электромеханика, 2021, т. 64, № 3, с. 24–35.
18. Gasiyarov V.R. et al. The Method of Bend Forming on Workpieces in Plate Rolling Applications. –Proceedings of the 7th International Conference on Industrial Engineering, 2022, pp. 668–678. DOI:10.1007/978-3-030-85230-6_79.
19. Pesin A. et al. Finite Element Simulation of Shear Strain in Various Asymmetric Cold Rolling Processes. – Вестник МГТУ им. Г.И. Носова, 2014, № 4, c. 32–40.
20. Песин А.М., Пустовойтов Д.О., Свердлик М.К. Развитие теории и технологии процесса асимметричной тонколистовой прокатки как метода интенсивной пластической деформации. Магнитогорск: Изд-во Магнитогорск. гос. техн. ун-та им. Г.И. Носова, 2017, 150 с.
21. Галкин В.В. и др. Автоматическая коррекция толщины головного участка полосы в гидравлической системе автоматического регулирования толщины широкополосного стана горячей прокатки. – Известия высших учебных заведений. Электромеханика, 2011, № 4, c. 46–50.
---
Работа выполнена при финансовой поддержке Минобрнауки России в рамках субсидии на финансовое обеспечение выполнения государственного задания (фундаментальное научное исследование), договор №FENU-2020-0020 (2020071ГЗ)
#
1. Anders D.A. et al. A Dimensional Analysis of Front-End Bending in Plate Rolling Applications. – Journal of Materials Processing Technology, 2012, No. 212(6), pp. 1387–1398, DOI:10.1016/j.jmat-protec.2012.02.005.
2. Gasiyarov V.R. Izvestiya vysshih uchebnyh zavedeniy. Elektromekhanika – in Russ. (News of Higher Educational Institutions. Electromechanics), 2019, No. 3, pp. 33–43.
3. Pаt. RU 2486974 C1. Sposob assimetrichnoy prokatki perednih kontsov tolstyh listov na reversivnyh stanah (Method of Asymmetric Rolling of the Front Ends of Thick Sheets on Reversible Mills) / V.М. Salganik et al., 2013.
4. Maksimov V.М. et al. Trudy XI Kongressa prokatchikov – in Russ. (Proceedings of the XI rollers’congress), Magnitogorsk, 2017, pp. 362–370.
5. Varshavskiy E.A., Hrapov M.A., Basurov V.М. Trudy XI Kon-gressa prokatchikov – in Russ. (Proceedings of the XI rollers’congress), Magnitogorsk, 2017, pp. 57–62.
6. Chikishev D.N., Pozhidaeva E.B. Analysis of the Causes of Vertical Bending of the Strip Front End at Hot Rolling on the Basis of Mathematical Modeling. – Izvestia Ferrous Metallurgy, 2016, vol. 59, No. 1, pp. 204–208, DOI:10.17073/0368-0797-2016-1-204-208.
7. Kiefer T., Kugi A. An Analytical Approach for Modelling Asymmetrical Hot Rolling of Heavy Plate. – Mathematical and Computer Modelling of Dynamical Systems, 2008, No. 14, pp. 249–267, DOI:10.1080/13873950701844915.
8. Minton J.J., Cawthorn C.J., Brambley E.J. Asymptotic Analysis of Asymmetric Thin Sheet Rolling. – International Journal of Mechanical Sciences, 2016, pp. 36–48, DOI:10.1016/j.ijmec-sci.2016.03.024.
9. Kawalek A. et al. Analysis of the Asymmetric Plate Rolling Process in the Finishing Stand 3600 – Archives of Metallurgy and Materials, 2014, vol. 59, iss. 4, DOI: 10.2478/amm-2014-0259.
10. Kiefer T., Kugi A. Model-Based Control of Front-End Bending in Hot Rolling Process. – The International Federation of Automatic Control Proceedings Volumes, 2008, DOI:10.3182/20080706-5-KR- 1001.1396.
11. Maksimov Е.А. Oborudovanie. – in Russ. (Equipment), 2008, No. 3, pp. 50–53.
12. Pesin A.M., Perekhozhih A.A., Pustovoytov D.О. Aktual'nye problemy sovremennoy nauki, tekhniki i obrazovaniya – in Russ. (Actual Problems of Modern Science, Technology and Education), 2012, vol. 1, No. 70, pp. 217–219.
13. Karandaev A.S. et al. Izvestiya vysshih uchebnyh zavedeniy. Elektromekhanika – in Russ. (News of Higher Educational Institutions. Electromechanics), 2019, vol. 62, No. 4, pp. 53–64.
14. Il'yasov B.G., Saitova G.А. Avtomatika i telemekhanika – in Russ. (Automation and Telemechanics), 2013, No. 3, pp. 173–191.
15. Kuznetsov B.I., Nikitina T.B., Bovdui I.V. Structural-Parametric Synthesis of Rolling Mills Multi-Motor Electric Drives. – Electrical Engineering & Electromechanics, 2020, No. 5, pp. 25–30, DOI:10.20998/2074-272X.2020.5.04.
16. Kuznetsov B.I. et al. The Method of Limitation of Dynamic Loads of Nonlinear Electromechanical Systems under State Vector Robust Control. – Electrical Engineering & Electromechanics, 2022, No. 2, pp. 3–10. DOI:10.20998/2074-272X.2022.2.01.
17. Karandaev A.S. et al. Izvestiya vysshih uchebnyh zavedeniy. Elektromekhanika – in Russ. (News of Higher Educational Institutions. Electromechanics), 2021, vol. 64, No. 3, pp. 24–35.
18. Gasiyarov V.R. et al. The Method of Bend Forming on Workpieces in Plate Rolling Applications. –Proceedings of the 7th International Conference on Industrial Engineering, 2022, pp. 668–678. DOI:10.1007/978-3-030-85230-6_79.
19. Pesin A. et al. Vestnik MGTU im. G.I. Nosova – in Russ. (Bulletin of the Moscow State Technical University n. a. G.I. Nosov), 2014, No. 4, pp. 32–40.
20. Pesin A.M., Pustovoytov D.O., Sverdlik M.K. Razvitie teorii i tekhnologii protsessa asimmetrichnoy tonkolistovoy prokatki kak metoda intensivnoy plasticheskoy deformatsii (Development of the Theory and Technology of the Process of Asymmetric Thin-Sheet Rolling as a Method of Intensive Plastic Deformation). Magnitogorsk: Izd-vo Magnitogorsk. gos. tekhn. un-ta im. G.I. Nosova, 2017, 150 p.
21. Galkin V.V. et al. Izvestiya vysshih uchebnyh zavedeniy. Elektromekhanika – in Russ. (News of Higher Educational Institutions. Electromechanics), 2011, No. 4, pp. 46–50.
---
This work was financially supported by the Ministry of Science and Higher Education of the Russian Federation within the framework of a grant for executing the state assignment (a fundamental scientific study), contract No. FENU-2020-0020 (2020071GZ).
Опубликован
2023-01-26
Раздел
Статьи