Проектирование дросселя на основе многофункционального интегрированного электромагнитного компонента

  • Регина Тагировна Хазиева
  • Максим Дмитриевич Иванов
Ключевые слова: многофункциональный интегрированный электромагнитный компонент, дроссель, сглаживающий фильтр, DC/DC-преобразователь, тяговая система электромобиля

Аннотация

Использование гибридных электромагнитных элементов в электротехнических комплексах и системах позволяет повысить надежность оборудования, а также снизить массу и габариты устройств. Статья посвящена разработке алгоритма проектирования многофункционального интегрированного электромагнитного компонента (МИЭК) с заданными электрическими параметрами для электротехнических систем. Проектирование МИЭК рассмотрено на примере тяговой системы электропитания электромобиля с DC/DC-преобразователем. В схеме DC/DC-преобразователя предполагается разместить многофункциональный интегрированный электромагнитный компонент в качестве дросселя, что значительно уменьшит вес и габариты устройства. Алгоритм проектирования дросселя на основе МИЭК позволяет выбрать оптимальные геометрические параметры компонента. Проведено сравнение параметров дросселя, выполненного на основе данного компонента, и классического дросселя, выполненного на основе тороидального ферромагнитного сердечника. Показано, что использование компонента позволяет существенно снизить массу и объем сглаживающего блока DC/DC-преобразователя.

Биографии авторов

Регина Тагировна Хазиева

канд. техн. наук, доцент, доцент кафедры «Электротехника и электрооборудование предприятий», Уфимский государственный нефтяной технический университет, Уфа, Россия; khazievart@mail.ru .

Максим Дмитриевич Иванов

аспирант кафедры «Электротехника и электрооборудование предприятий», Уфимский государственный нефтяной технический университет, Уфа, Россия; maxivanovd@mail.ru.

Литература

1. Pat. US512340А. Coil for Electro-Magnets / N. Tesla, 1894.
2. Волков И.В., Милях А.Н. Системы неизменного тока на основе индуктивно-емкостных преобразователей. Киев: Наукова думка, 1974, 216 с.
3. Кашин Ю.А. и др. Деконные системы бразования электромагнитной энергии. – Проблемы преобразовательной техники: тез. док. Всесоюз. науч.-техн. конф., Киев, 1983.
4. Бердников С.В. Узлы принудительной коммутации тиристоров с обмоткой-емкостью. – Проблемы преобразовательной техники: тез. док. Всесоюз. науч.- техн. конф. Киев, 1983.
5. Бутырин П.А. и др. Разработка математической модели и анализ особенностей режимов индуктивно-емкостного преобразователя на основе каткона. – Вестник МЭИ, 2018, № 4, с. 81–88.
6. Бутырин П.А., Гусев Г.Г., Кужман В.В. Математическая модель фильтрокомпенсирующего устройства на основе катушки-конденсатора. – Известия РАН. Энергетика, 2014, № 2, с. 130–135.
7. Бутырин П.А. и др. Алгоритм определения параметров каткона – элемента оптимизации режимов электрических сетей. – Известия РАН. Энергетика, 2015, № 2, с. 69–75.
8. Михеев Д.В. Экспериментальное исследование частотных характеристик катушки-конденсатора при различных граничных условиях. – Электричество, 2018, № 9, с. 52–55.
9. Jung J.-H. Bifilar Winding of a Center-Tapped Transformer Including Integrated Resonant Inductance for LLC Resonant Converters. – IEEE Transactions on Power Electronics, 2013, vol. 28, No. 2, pp. 615–620, DOI: 10.1109/TPEL.2012.2213097.
10. Long X. et al. The Structure and Modelling Method of Integrated LLC Transformer with Wide Range Resonant Inductance Regulation. – IEEE 1st International Power Electronics and Application Symposium, 2021, DOI:10.1109/PEAS53589.2021.9628473.
11. Wang Y.L. et al. Component-Based Functional Integrated Circuit System Design and Its Straight Implementation. – International Journal of Engineering and Industries, 2011, vol. 2(4), DOI:10.4156/ijei.vol2.issue4.3.
12. Пат. SU1492453A1. Спиральный генератор импульсов напряжения / В.И. Мельников и др., 1989.
13. Пат. RU 2585248 C2. Многофункциональный интегрированный электромагнитный компонент / С.Г. Конесев, 2016.
14. Хазиева Р.Т., Иванов М.Д. Математическое и физическое моделирование фильтра низких частот на основе многофункционального интегрированного электромагнитного компонента. – Электричество, 2023, № 8, с. 13–22.
15. Ютт В.Е. и др. Экспериментальное исследование режимов работы импульсных преобразователей постоянного напряжения трехфазной структуры при активной и активно-индуктивной нагрузках. – Электроника и электрооборудование транспорта, 2016, № 5, с. 11–14.
16. Гулямов К.Х. Энергетическая установка электромобиля с системой многоканального преобразования постоянного напряжения: дис. … канд. техн. наук, М., 2018, 156 с.
17. Gulyamov K. et al. Study of the DC/DC Boost Converter Physical Model. – Ural-Siberian Smart Energy Conference, 2021, pp. 77–80, DOI:10.1109/USSEC53120.2021.9655751.
18. Найвельт Г.С. и др. Источники электропитания радиоэлектронной аппаратуры: справочник. М.: Радио и Связь, 1985, 576 с.
19. Правила устройства электроустановок. М.: Эксмо, 2023, 512 с.
20. Райков Е.И., Грузинов Е.В. Справочник молодого монтажника лифтов. М.: Высшая школа, 1990, 239 с.
21. Khazieva R.T., Sattarov R.R., Ivanov M.D. Multifunctional Integrated Electromagnetic Component Windings Resistance. – International Conference on Industrial Engineering, Applications and Manufacturing (ICIEAM), 2023, pp. 438–442, DOI: 10.1109/ICIEAM57311.2023.10139076.
22. Khazieva R.T., Ivanov M.D., Sattarov R.R. Capacitance of Multifunctional Integrated Electromagnetic Component. – International Russian Automation Conference (RusAutoCon), 2023, pp. 176–181, DOI: 10.1109/RusAutoCon58002.2023.10272851.
23. Khazieva R.T., Ivanov M.D. Selection of the Optimum Device Parameters for Constant Magnetic Field Generation. – International Symposium “Sustainable Energy and Power Engineering 2021”, 2021, vol. 288, DOI: 10.1051/e3sconf/202128801004.
24. Ivanov M., Solovev B., Khazieva R. Multifunctional Integrated Electromagnetic Component Windings Inductance. – Russian Workshop on Power Engineering and Automation of Metallur-gy Industry: Research & Practice (PEAMI), 2023, pp. 12–17, DOI: 10.1109/PEAMI58441.2023.10299928.
25. Samuelsson C. Comparative Evaluation of the Stochastic Simplex Bisection Algorithm and the SciPy.Optimize Module. – Federated Conference on Computer Science and Information Systems (FedCSIS), Lodz, Poland, 2015, pp. 573–578, DOI: 10.15439/2015F47.
---
Исследование выполнено на средства гранта Стипендии Президента Российской Федерации в 2022–2024 гг. для молодых ученых и аспирантов, осуществляющих перспективные научные исследования и разработки по приоритетным направлениям модернизации российской экономики. Грантополучатель Хазиева Регина Тагировна. Тема исследований «Разработка и исследование фильтрокомпенсирующего устройства для повышения качества электроэнергии»
#
1. Pat. US512340А. Coil for Electro-Magnets / N. Tesla, 1894.
2. Volkov I.V., Milyah A.N. Sistemy neizmennogo toka na osnove induktivno-emkostnyh preobrazovateley (DC Systems Based on Inductive-Capacitive Converters). Kiev: Naukova dumka, 1974, 216 p.
3. Kashin Yu.A. et al. Problemy preobrazovatel'noy tekhniki: tez. dok. Vsesoyuz. nauch.-tekhn. konf. – in Russ. (Problems of Conversion Technology: Tez. Doc. The All-Union. Scientific and Technical Conf.), Kiev, 1983.
4. Berdnikov S.V. Problemy preobrazovatel'noy tekhniki: tez. dok. Vsesoyuz. nauch.-tekhn. konf. – in Russ. (Problems of Conversion Technology: Tez. Doc. The All-Union. Scientific and Technical Conf.), Kiev, 1983.
5. Butyrin P.А. et al. Vestnik MEI – in Russ. (Bulletin of MPEI), 2018, No. 4, pp. 81–88.
6. Butyrin P.A., Gusev G.G., Kuzhman V.V. Izvestiya RAN. Energetika – in Russ. (News of the Russian Academy of Sciences. Power Engineering), 2014, No. 2, pp. 130–135.
7. Butyrin P.А. et al. Izvestiya RAN. Energetika – in Russ. (News of the Russian Academy of Sciences. Power Engineering), 2015, No. 2, pp. 69–75.
8. Miheev D.V. Elektrichestvo – in Russ. (Electricity), 2018. No. 9, pp. 52–55.
9. Jung J.-H. Bifilar Winding of a Center-Tapped Transformer Including Integrated Resonant Inductance for LLC Resonant Converters. – IEEE Transactions on Power Electronics, 2013, vol. 28, No. 2, pp. 615–620, DOI: 10.1109/TPEL.2012.2213097.
10. Long X. et al. The Structure and Modelling Method of Integrated LLC Transformer with Wide Range Resonant Inductance Regulation. – IEEE 1st International Power Electronics and Application Symposium, 2021, DOI:10.1109/PEAS53589.2021.9628473.
11. Wang Y.L. et al. Component-Based Functional Integrated Circuit System Design and Its Straight Implementation. – International Journal of Engineering and Industries, 2011, vol. 2(4), DOI:10.4156/ijei.vol2.issue4.3.
12. Pаt. SU1492453A1. Spiral'nyy generator impul'sov napryazheniya (Spiral Voltage Pulse Generator) / V.I. Mel'nikov et al., 1989.
13. Pаt. RU 2585248 C2. Mnogofunktsional'nyy integrirovannyy elektromagnitnyy komponent (Multifunctional Integrated Electromagnetic Component) / S.G. Konesev, 2016.
14. Khazieva R.T., Ivanov M.D. Elektrichestvo – in Russ. (Electricity), 2023, No. 8, pp. 13–22.
15. Jutt V.E. et al. Elektronika i elektrooborudovanie transporta – in Russ. (Electronics and Electrical Equipment of Transport), 2016, No. 5, pp. 11–14.
16. Gulyamov K.H. Energeticheskaya ustanovka elektromobilya s sistemoy mnogokanal'nogo preobrazovaniya postoyannogo napryazheniya: dis. … kand. tekhn. nauk (Electric Vehicle Power Plant with a Multichannel DC Voltage Conversion System: Dis. ... Сand. Sci. (Eng.)), М., 2018, 156 p.
17. Gulyamov K. et al. Study of the DC/DC Boost Converter Physical Model. – Ural-Siberian Smart Energy Conference, 2021, pp. 77–80, DOI:10.1109/USSEC53120.2021.9655751.
18. Nayvel't G.S. et al. Istochniki elektropitaniya radioelektronnoy apparatury: spravochnik (Power Sources of Electronic Equipment: Handbook). M.: Radio i Svyaz', 1985, 576 p.
19. Pravila ustroystva elektroustanovok (Rules for the Installation of Electrical Installations). M.: Eksmo, 2023, 512 p.
20. Raikov E.I., Gruzinov E.V. Spravochnik molodogo montazhnika liftov (Handbook of a Young Elevator Installer.). M.: Vysshaya shkola, 1990, 239 p.
21. Khazieva R.T., Sattarov R.R., Ivanov M.D. Multifunctional Integrated Electromagnetic Component Windings Resistance. – International Conference on Industrial Engineering, Applications and Manufacturing (ICIEAM), 2023, pp. 438–442, DOI: 10.1109/ICIEAM57311.2023.10139076.
22. Khazieva R.T., Ivanov M.D., Sattarov R.R. Capacitance of Multifunctional Integrated Electromagnetic Component. – International Russian Automation Conference (RusAutoCon), 2023, pp. 176–181, DOI: 10.1109/RusAutoCon58002.2023.10272851.
23. Khazieva R.T., Ivanov M.D. Selection of the Optimum Device Parameters for Constant Magnetic Field Generation. – International Symposium “Sustainable Energy and Power Engineering 2021”, 2021, vol. 288, DOI: 10.1051/e3sconf/202128801004.
24. Ivanov M., Solovev B., Khazieva R. Multifunctional Inte-grated Electromagnetic Component Windings Inductance. – Russian Workshop on Power Engineering and Automation of Metallurgy Industry: Research & Practice (PEAMI), 2023, pp. 12–17, DOI: 10.1109/PEAMI58441.2023.10299928.
25. Samuelsson C. Comparative Evaluation of the Stochastic Simplex Bisection Algorithm and the SciPy.Optimize Module. – Federated Conference on Computer Science and Information Systems (FedCSIS), Lodz, Poland, 2015, pp. 573–578, DOI: 10.15439/2015F47
---
The research was financially supported by the grant of the Scholarship of the President of the Russian Federation in 2022-2024 for young scientists and postgraduates engaged in promising research and development in priority areas of modernization of the Russian economy. The grantee is Khazieva Regina Tagirovna. The research topic is "Research and development of a harmonic filtering and reactive power compensation device for improving the electric power quality"
Опубликован
2024-01-25
Раздел
Статьи