Исследование ключевых факторов, влияющих на динамические измерения сверхпроводящим гравиметром
Аннотация
Гравитационно-динамические измерения позволяют быстро получать данные о гравитационной сетке с одинаковой точностью, что важно для оперативного моделирования региональных геоидов и разработки технологий разведки ресурсов. Сверхпроводящий гравиметр – это относительный гравиметр сверхвысоких точности и пространственного разрешения. Исследование технологии динамических измерений в сверхпроводящих гравиметрах имеет большое значение для повышения точности динамических измерений гравитации. В статье рассмотрены ключевые факторы, влияющие на динамические измерения в сверхпроводящих гравиметрах. Описан принцип работы сверхпроводящих гравиметров. На основе уравнения вынужденной вибрации проведен анализ влияния ускорения вертикального возмущения носителя на результаты измерений сверхпроводящего гравиметра. Проведено исследование закона изменения выходной дифференциальной емкости, вызванного ускорением горизонтального возмущения. Изучен эффект Эотвоса сверхпроводящего гравиметра на основе анализа влияния скорости и курсового угла носителя на выходные данные сверхпроводящих гравиметров. Результаты исследований служат основой для оптимизации системы магнитной левитации сверхпроводящих гравиметров и извлечения динамических сигналов.
Литература
2. Lintao L. et al. Development and Practice of CHZ-Ⅱ Marine Gravimeter. – Journal of Surveying and Mapping, 2024, 53 (04), pp. 620–628, DOI: 10.11947/j.AGCS.2024.20220580.
3. Meng Z. et al. Development of Airborne Gravimeters and Gravity Gradiometers. – Chinese Geophysical Society. Proceedings of the First National Mineral Exploration Conference. Tianjin Institute of Navigation Instruments; China Natural Resources Aerial Geophysical and Remote Sensing Center, 2021, DOI: 10.26914/c.cnkihy.2021.036245.
4. Chang G. et al. Review of Dynamic Gravity Measurement Technology from the Perspective of Inertial Technology (II): Different Inertial Platforms. – Ocean Surveying and Mapping, 2014, 34 (04), pp. 73–78.
5. Zhang L. et al. Analysis of the Background Noise in the Seismic Frequency Band of the Global Superconducting Gravimeter. – North China Earthquake Science, 2024, 42(03), 56–60, 82, DOI: 10.3969/j.issn.1003−1375.2024.03.008.
6. Hu P. et al. Overview of the Development of Aerial/Marine Gravity Measurement Instruments. – Navigation, Positioning and Timing, 2017,4 (04), pp. 10–19, DOI: 10.19306/j.cnki.2095-8110.2017.04.002.
7. Gao S. et al. Progress in Polar Aerial Gravity Measurement and Its Applications. – Polar Research, 2018, 30 (01), pp. 97–113, DOI: 10.13679/j.jdyj.20170020.
8. Ning J. et al. Progress in Sea Air Gravity Measurement Technology. – Ocean Surveying and Mapping, 2014, 34 (03), pp. 67–72+76.
9. Ishihara T. et al. Development of an Underwater Gravity Measurement System with Autonomous Underwater Vehicle for Marine Mineral Exploration. – 2016 Techno-Ocean (Techno-Ocean), 2016, pp. 127–133, DOI: 10.1109/Techno-Ocean.2016.7890633.
10. Luo G. Modeling and Suspension Characteristics Analysis of Superconducting Gravimeter Magnetic Suspension System [D]. Institute of Seismology, China Earthquake Administration, 2020.
11. Yang J. Research on Tilt Feedback Control System for Superconducting Gravimeter [D]. Huazhong University of Science and Technology, 2020.
12. Huang X. et al. Design and Construction of a Superconducting Gravimeter Prototype. – IEEE Transactions on Instrumentation and Measurement, 2022, vol. 71, pp. 1–10, DOI: 10.1109/TIM.2022. 3147885.
13. Zhang Y. et al. Helium Damping Characteristics of Rotating Superconducting Rotor. – Acta Physica Sinica, 2024, 73 (8), DOI: 10.7498/aps.73.20232011.
14. Zhang Y. et al. Analysis on Magnetic Coupling Characteristics and Carrying Capacity of Superconducting Rotor Magnetic Levitation Structure. – Acta Physica Sinica, 2023, 72 (12), DOI: 10.7498/aps.72.20230328.
15. Zhang Y. et al. Study on Vertical Alignment Method of Superconducting Rotor's Polar Axis. – IEEE Transactions on Applied Superconductivity, 2024, vol. 34, No. 4, pp. 1–9, DOI: 10.1109/TASC.2024.3375891.
16. Niu F. et al. Design, Regulation, and Fast Measurement Method of Weak Magnetic Force Gradient Based on Superconducting Gravimeter. – IEEE Transactions on Applied Superconductivity, 2023, 33(3), DOI: 10.1109/TASC.2023.3242973
---
Работа частично поддержана Национальной ключевой программой исследований и разработок Китая (грант № 2023YFF0713500).
#
1. Shi Z. Dynamic Gravimetry Method and Its Application in Regional Leveling Modeling [D]. University of the Chinese Academy of Sciences (Chinese Academy of Sciences Institute of Precision Measurement Science and Technology Innovation), 2022.
2. Lintao L. et al. Development and Practice of CHZ-Ⅱ Marine Gravimeter. – Journal of Surveying and Mapping, 2024, 53 (04), pp. 620–628, DOI: 10.11947/j.AGCS.2024.20220580.
3. Meng Z. et al. Development of Airborne Gravimeters and Gravity Gradiometers. – Chinese Geophysical Society. Proceedings of the First National Mineral Exploration Conference. Tianjin Institute of Navigation Instruments; China Natural Resources Aerial Geophysical and Remote Sensing Center, 2021, DOI: 10.26914/c.cnkihy.2021.036245.
4. Chang G. et al. Review of Dynamic Gravity Measurement Technology from the Perspective of Inertial Technology (II): Different Inertial Platforms. – Ocean Surveying and Mapping, 2014, 34 (04), pp. 73–78.
5. Zhang L. et al. Analysis of the Background Noise in the Seismic Frequency Band of the Global Superconducting Gravimeter. – North China Earthquake Science, 2024, 42(03), 56–60, 82, DOI: 10.3969/j.issn.1003−1375.2024.03.008.
6. Hu P. et al. Overview of the Development of Aerial/Marine Gravity Measurement Instruments. – Navigation, Positioning and Timing, 2017,4 (04), pp. 10–19, DOI: 10.19306/j.cnki.2095-8110.2017.04.002.
7. Gao S. et al. Progress in Polar Aerial Gravity Measurement and Its Applications. – Polar Research, 2018, 30 (01), pp. 97–113, DOI: 10.13679/j.jdyj.20170020.
8. Ning J. et al. Progress in Sea Air Gravity Measurement Technology. – Ocean Surveying and Mapping, 2014, 34 (03), pp. 67–72+76.
9. Ishihara T. et al. Development of an Underwater Gravity Measurement System with Autonomous Underwater Vehicle for Marine Mineral Exploration. – 2016 Techno-Ocean (Techno-Ocean), 2016, pp. 127–133, DOI: 10.1109/Techno-Ocean.2016.7890633.
10. Luo G. Modeling and Suspension Characteristics Analysis of Superconducting Gravimeter Magnetic Suspension System [D]. Institute of Seismology, China Earthquake Administration, 2020.
11. Yang J. Research on Tilt Feedback Control System for Superconducting Gravimeter [D]. Huazhong University of Science and Technology, 2020.
12. Huang X. et al. Design and Construction of a Superconducting Gravimeter Prototype. – IEEE Transactions on Instrumentation and Measurement, 2022, vol. 71, pp. 1–10, DOI: 10.1109/TIM.2022.3147885.
13. Zhang Y. et al. Helium Damping Characteristics of Rotating Superconducting Rotor. – Acta Physica Sinica, 2024, 73 (8), DOI: 10.7498/aps.73.20232011.
14. Zhang Y. et al. Analysis on Magnetic Coupling Characteristics and Carrying Capacity of Superconducting Rotor Magnetic Levitation Structure. – Acta Physica Sinica, 2023, 72 (12), DOI: 10.7498/aps.72.20230328.
15. Zhang Y. et al. Study on Vertical Alignment Method of Superconducting Rotor's Polar Axis. – IEEE Transactions on Applied Superconductivity, 2024, vol. 34, No. 4, pp. 1–9, DOI: 10.1109/TASC.2024.3375891.
16. Niu F. et al. Design, Regulation, and Fast Measurement Method of Weak Magnetic Force Gradient Based on Superconducting Gravimeter. – IEEE Transactions on Applied Superconductivity, 2023, 33(3), DOI: 10.1109/TASC.2023.3242973
---
This work is partially supported by the National Key R&D Program of China (Grant No. 2023YFF0713500)