Analytical Characteristics of a Synchronous Generator

  • Roman I. IL’YASOV
  • Олег Владиславович Кокорин
  • Artem V. DEEV
Keywords: calculation equations, phasor diagram, synchronous generator, analytical characteristics, excitation current input time

Abstract

The basic characteristics of synchronous electric machines are conventionally constructed based on the results of experimental studies. Methods for constructing them based on the results of analytical calculations are not given in the known literature. Therefore, it is difficult to assess the extent to which the analytical design calculation results comply with the requirements specification, and agree with the results of computer simulation and experimental studies. The article describes methods for constructing the main characteristics of synchronous electric machines on the basis of analytical calculations. Mathematical derivations of functions on the basis of a phasor diagram are given. The extended phasor diagram of a salient pole generator and the algorithm of its construction are given. It is shown that the form of some characteristics does not depend on whether the generator is a salient- or nonsalient pole one. The influence of the armature winding reduced resistance, which is characteristic of medium- and low-capacity power machines, is taken into account. The choice of the magnetomotive force value of the inductor for compensating the armature reaction field to maintain the nominal voltage value is substantiated. On the basis of the obtained characteristics, the ultimate overload capacity is estimated. The article also presents a method for evaluating the field winding parameters and the necessary field current regulation depth to ensure the preset voltage stabilization time in response to changes in the connected load value and type. By using the analytical characteristics, the performance of the electrical machine being designed can be evaluated in different modes of its operation, its shortcomings can be revealed, and necessary changes can be introduced already at the preliminary design calculation stage. The proposed analytical formulas can be algorithmized for the possibility to automatically obtain the calculation results in the form of typical conventional diagrams.

Author Biographies

Roman I. IL’YASOV

(Moscow Aviation Institute (National Research University), Moscow, Russia) – Docent of the Electric Power, Electromechanical and Biotechnical Systems Dept., Cand. Sci. (Eng.), Docent.

Олег Владиславович Кокорин

(Moscow Aviation Institute (National Research University), Moscow, Russia) – Student of the Electric Power, Electromechanical and Biotechnical Systems Dept.

Artem V. DEEV

(Moscow Aviation Institute (National Research University), Moscow, Russia) –Student of the Electric Power, Electromechanical and Biotechnical Systems Dept.

References

1. Behn-Eschenburg H. On the Magnetic Dispersion in Induction Motors, and Its Influence on the Design of These Machines. – Journal of the Institution of Electrical Engineers, 1904, vol. 33, pp. 239–278, DOI: 10.1049/jiee-1.1904.0085.
2. Behn-Eschenburg H. Uber Wechselstrombahnmotoren der Maschinenfabrik Oerlikon und ihre Wirkungen auf Telephonleitungen. – Elektrische Kraitbetriebe und Bahnen, 1908, vol. 6, iss. 31, pp. 624–630.
3. Arnold E., La Cour J.L. Die synchronen Wechselstrommaschinen. Generatoren, Motoren und Umformer. Ihre Theorie, Konstruktion, Berechnung und Arbeitsweise. Berlin/Heidelberg, Germany: Springer, 1913, 897 p.
4. Park R. Definition of an Ideal Synchronous Machine and Formula for Armature Flux Leakage. – GE Review, 1928, vol. 31, No. 6, pp. 332–334.
5. Park R. Two-Reaction Theory of Synchronous Machines Generalized Method of Analysis-Part I. – Transactions of the American Institute of Electrical Engineers, 1929, vol. 48, No. 3, pp. 716–727, DOI: 10.1109/T-AIEE.1929.5055275.
6. Костенко М.П. Электрические машины. М.-Л.: Государственное энергетическое издательство, 1944, 816 с.
7. Henneberger G. Electrical Machines I. Basics, Design, Function, Operation. Aachen, Germany: Aachen University, 2003, pp. 167–176.
8. Sahdev S.K. Electrical Machines. Cambridge, UK: Cambridge University Press, 2018, pp. 547–550.
9. Fuchs E.F., Masoum M.A.S. Power Quality in Power Systems and Electrical Machines. Amsterdam, The Netherlands: Elsevier, 2008, pp. 164–171.
10. Wildi T. Electrical Machines, Drives and Power Systems, 6th ed. London, UK: Pearson, 2006, p. 49.
11. Костенко М.П., Пиотровкий Л.М. Электрические машины. Ч. 2. Машины переменного тока. Л.: Энергия, 1973, 648 с.
12. Вольдек А.И. Электрические машины. Л.: Энергия, 1974, 839 с.
13. Брускин Д.Э., Зохорович А.Е., Хвостов В.С. Электрические машины и микромашины. М.: Высшая школа, 1981, 432 с.
14. Зечихин Б.С. Автоматизированный расчёт авиационного синхронного генератора. М.: Изд-во МАИ, 1989, 64 с.
15. Ковалев Л.К. и др. Электрические машины и устройства на основе массивных высокотемпературных сверхпроводников. М.: Физматлит, 2010, 396 с.
16. Ilyasov R.I. The Phasor Diagram of a Superconducting Synchronous Electrical Machine. – Inventions, 2023, vol. 8, DOI: 10.3390/ inventions8030068.
17. ГОСТ Р 54073-2017. Системы электроснабжения самолетов и вертолетов. Общие требования и нормы качества электроэнергии. М.: Стандартинформ, 2018, 36 с.
18. Dezhin, D., Ilyasov R. Development of Fully Superconducting 5 MW Aviation Generator with Liquid Hydrogen Cooling. – EUREKA: Physics and Engineering, 2022, No. 1, pp. 62–73, DOI: 10.21303/2461-4262.2022.001771.
#
1. Behn-Eschenburg H. On the Magnetic Dispersion in Induction Motors, and Its Influence on the Design of These Machines. – Journal of the Institution of Electrical Engineers, 1904, vol. 33, pp. 239–278, DOI: 10.1049/jiee-1.1904.0085.
2. Behn-Eschenburg H. Uber Wechselstrombahnmotoren der Maschinenfabrik Oerlikon und ihre Wirkungen auf Telephonleitungen. – Elektrische Kraitbetriebe und Bahnen, 1908, vol. 6, iss. 31, pp. 624–630.
3. Arnold E., La Cour J.L. Die synchronen Wechselstrommaschinen. Generatoren, Motoren und Umformer. Ihre Theorie, Konstruktion, Berechnung und Arbeitsweise. Berlin/Heidelberg, Germany: Springer, 1913, 897 p.
4. Park R. Definition of an Ideal Synchronous Machine and Formula for Armature Flux Leakage. – GE Review, 1928, vol. 31, No. 6, pp. 332–334.
5. Park R. Two-Reaction Theory of Synchronous Machines Generalized Method of Analysis-Part I. – Transactions of the American Institute of Electrical Engineers, 1929, vol. 48, No. 3, pp. 716–727, DOI: 10.1109/T-AIEE.1929.5055275.
6. Kostenko M.P. Elektricheskie mashiny (Electric Machines). M.-L.: Gosudarstvennoe energeticheskoe izdatel’stvo, 1944, 816 p.
7. Henneberger G. Electrical Machines I. Basics, Design, Function, Operation. Aachen, Germany: Aachen University, 2003, pp. 167–176.
8. Sahdev S.K. Electrical Machines. Cambridge, UK: Cambridge University Press, 2018, pp. 547–550.
9. Fuchs E.F., Masoum M.A.S. Power Quality in Power Systems and Electrical Machines. Amsterdam, The Netherlands: Elsevier, 2008, pp. 164–171.
10. Wildi T. Electrical Machines, Drives and Power Systems, 6th ed. London, UK: Pearson, 2006, p. 49.
11. Kostenko M.P., Piotrovkiy L.M. Elektricheskie mashiny. Ch. 2. Mashiny peremennogo toka (Electric Machines. Part 2: AC Machines). L.: Energiya, 1973, 648 p.
12. Vol’dek A.I. Elektricheskie mashiny (Electric Machines). L.: Energiya, 1974, 839 p.
13. Bruskin D.E., Zohorovich A.E., Hvostov V.S. Elektricheskie mashiny i mikromashiny (Electric Machines and Micromachines). M.: Vysshaya shkola, 1981, 432 p.
14. Zechihin B.S. Avtomatizirovannyy raschyot aviatsionnogo sinhronnogo generatora (Automated Calculation of an Aircraft Synchronous Generator). M.: Izd-vo MAI, 1989, 64 p.
15. Kovalev L.K. et al. Elektricheskie mashiny i ustroystva na osnove massivnyh vysokotemperaturnyh sverhprovodnikov (Electrical Machines and Devices Based on Massive High-Temperature Supercon-ductors). M.: Fizmatlit, 2010, 396 p.
16. Ilyasov R.I. The Phasor Diagram of a Superconducting Synchronous Electrical Machine. – Inventions, 2023, vol. 8, DOI: 10.3390/inventions8030068.
17. GOST R 54073-2017. Sistemy elektrosnabzheniya samoletov i vertoletov. Obshchie trebovaniya i normy kachestva elektroenergii (Power Supply Systems for Aircraft and Helicopters. General Requirements and Electricity Quality Standards). M.: Standartinform, 2018, 36 p.
18. Dezhin, D., Ilyasov R. Development of Fully Superconducting 5 MW Aviation Generator with Liquid Hydrogen Cooling. – EUREKA: Physics and Engineering, 2022, No. 1, pp. 62–73, DOI: 10.21303/2461-4262.2022.001771
Published
2025-04-24
Section
Article