Simulating a Strong Magnetic Storm Impact on Russia’s Interconnected Power System of Center

  • Aleksey A. TREN’KIN
  • Sergey V. VOEVODIN
  • Ol'ga N. KOBLOVA
  • Viktor D. SELEMIR
  • Vera V. VAHNINA
  • Aleksey A. KUVSHINOV
  • Aleksey N. CHERNENKO
Keywords: geomagnetic storm, electric power system, geomagnetically induced current, power transformer, active power losses

Abstract

Studying of a negative impact of the space weather and magnetic storms as its special case, on the performance of a critical technological infrastructure, with development of methods and means for protecting it is a relevant but difficult task. Many advanced countries, primarily the United States, are dealing with this problem. The article presents the results of elaborating a methodology for computational simulation of the impact of geomagnetically induced currents on large electric power systems. The developed methodology makes it possible to take into account the influence of changes in the reactive power and temperature of power transformer structural elements caused by magnetic biasing of their core, as well as the operation of relay protection. The impact of the geomagnetically induced currents expected during a strong magnetic storm on Russia’s Interconnected Power System of Center, including the power systems of Moscow, Leningrad and other major administrative and industrial regions of the country has been simulated for the first time. It is shown that such impact gives rise to a set of factors that can cause the development of a system-wide accident: a significant decrease in voltage at a number of power system facilities, mass-scale disconnection of power lines by their relay protections, and unacceptable heating of structural elements of some power transformers.

Author Biographies

Aleksey A. TREN’KIN

(Russian Federal Nuclear Center – All-Russia Research Institute of Experimental Physics, Sarov, Nizhny Novgorod Region, Russia) – Head of the Research Dept., Cand. Sci. (Phys.-Math.).

Sergey V. VOEVODIN

(Russian Federal Nuclear Center – All-Russia Research Institute of Experimental Physics, Sarov, Nizhny Novgorod Region, Russia) – Deputy Head of the Research Dept., Cand. Sci. (Phys.-Math.).

Ol'ga N. KOBLOVA

(Russian Federal Nuclear Center – All-Russia Research Institute of Experimental Physics, Sarov, Nizhny Novgorod Region, Russia) – Head of the Research Group.

Viktor D. SELEMIR

(Russian Federal Nuclear Center – All-Russia Research Institute of Experimental Physics, Sarov, Nizhny Novgorod Region, Russia) – Director of the Research and Industrial Center of Physics, Dr. Sci. (Phys.-Math.), Corresponding Member of the RAS.

Vera V. VAHNINA

(Togliatti State University, Togliatti, Russia) – Head of the Power Supply and Electrical Engineering Dept., Dr. Sci. (Eng.), Professor.

Aleksey A. KUVSHINOV

(Togliatti State University, Togliatti, Russia) – Professor of the Power Supply and Electrical Engineering Dept., Dr. Sci. (Eng.), Docent.

Aleksey N. CHERNENKO

(Togliatti State University, Togliatti, Russia) – Docent of the Power Supply and Electrical Engineering Dept., Cand. Sci. (Eng.), Docent.

References

1. Пилипенко В.А. Воздействие космической погоды на наземные технологические системы. – Солнечно-земная физика, 2021, т. 7, № 3, с. 72–110.
2. Kappenman J. Geomagnetic Storms and Their Impacts on the U.S. Power Grid: Report Prepared for Oak Ridge National Laboratory. Goleta, CA: Metatech Corporation, 2010, 197 p.
3. Baker D.N. et al. Severe Space Weather Events – Understanding Societal and Economic Impacts: A Workshop Report. Washington, DC: The National Academies Press, 2009, 32 p.
4. Bolduc L. et al. A Study of Geoelectromagnetic Disturbances in Quebec. II. Detailed Analysis of a Large Event. – IEEE Transactions on Power Delivery, 2000, vol. 15 (1), pp. 272–278, DOI:10.1109/61.847262.
5. Kappenman J.G. An Overview of the Impulsive Geomagnetic Field Disturbances and Power Grid Impacts Associated with the Violent Sun-Earth Connection Events of 29–31 October 2003 and a Comparative Evaluation with Other Contemporary Storms. – Space Weather, 2005, vol. 3 (8), DOI:10.1029/2004SW000128.
6. Pulkkinen A. et al. Geomagnetic Storm of 29–31 October 2003: Geomagnetically Induced Currents and Their Relation to Problems in the Swedish Highvoltage Power Transmission System. – Space Weather, 2005, vol. 3 (8), DOI:10.1029/2004SW000123.
7. Liu C., Li Y., Pirjola R. Observations and Modeling of GIC in the Chinese Large-Scale High-Voltage Power Networks. – Journal of Space Weather Space Climate, 2014, vol. 4 (16), DOI:10.1051/swsc/2013057.
8. Kappenman J.G. Geomagnetic Disturbances and Impacts upon Power System Operation. In book: Electric Power Generation, Transmission, and Distribution, 2007, DOI:10.1201/9781420009255.ch16.
9. Molinski T.S. Why Utilities Respect Geomagnetically Induced Currents. –Journal of Atmospheric and Solar-Terrestrial Physics, 2002, vol. 64(16), pp. 1765–1778, DOI:10.1016/S1364-6826(02)00126-8.
10. Вахнина В.В. и др. Механизмы воздействия квазипостоянных геоиндуцированных токов на электрические сети. М.: Инфра-Инженерия, 2018, 256 с.
11. Кувшинов А.А. и др. Влияние квазипостоянных токов на электродинамическую стойкость силовых трансформаторов: элементы теории и методы испытаний. В 2-х частях. М.: Энергопрогресс, 2019.
12. Transformer Thermal Impact Assessments for DC Withstand Capability: Examining the Impacts of Geomagnetically Induced Current (GIC) on Transformer Thermal Performance. EPRI, Palo Alto, CA: 2019, 3002017708.
13. Hapgood M. The Great Storm of May 1921: An Exemplar of a Dangerous Space Weather Event. – Space Weather, 2019, vol. 17 (4), pp. 950–975, DOI:10.1029/2019SW002195.
14. Kataoka R., Iwahashi K. Inclined Zenith Aurora over Kyoto on 17 September 1770: Graphical Evidence of Extreme Magnetic Storm. – Space Weather, 2017, vol. 15(10), pp. 1314–1320, DOI:10.1002/2017sw001690.
15. Love J.J. et al. On the Lognormality of Historical Magnetic Storm Intensity Statistics: Implications for Extreme-Event Probabilities. – Geophysical Research Letters, 2015, vol. 42 (16). pp. 6544–6553, DOI:10.1002/2015GL064842.
16. Obama B. Executive Order: Coordinating Efforts to Prepare the Nation for Space Weather Events, 2016 [Электрон. ресурс], URL: https://obamawhitehouse.archives.gov/the-press-office/2016/10/13/executive-order-coordinating-efforts-prepare-nation-space-weather-events (дата обращения 12.10.2022).
17. Trump D.J. Executive Order on Coordinating National Resilience to Electromagnetic Pulses, 2019 [Электрон. ресурс], URL: https://trumpwhitehouse.archives.gov/presidential-actions/executive-order-coordinating-national-resilience-electromagnetic-pulse (дата обращения 12.10.2022).
18. National Space Weather Strategy. National Science and Technology Council. Washington, DC, 2015, 18 p.
19. Strategy for Protecting and Preparing the Homeland Against Threats of Electromagnetic Pulse and Geomagnetic Disturbances. October 9, 2018.
20. National Space Weather Program. Strategic Plan. Office of Federal Coordinator for Meteorological Services and Supporting Research FCM-P30-1995. Washington, DC, 1995.
21. NERC Standard TPL-007-4: Transmission System Planned Performance for Geomagnetic Disturbance Events. March 19, 2020.
22. Wik M. et al. Space Weather Events in July 1982 and October 2003 and the Effects of Geo-Magnetically Induced Currents on Swedish Technical Systems. – Annales Geophysicae, 2009, vol. 27(4), pp. 1775–1787, DOI:10.5194/angeo-27-1775-2009.
23. Wik M. et al. Calculation of Geomagnetically Induced Currents In the 400 kV Power Grid in Southern Sweden. – Space Weather, 2008, vol. 6 (7), DOI:10.1029/2007SW000343.
24. Anjana S., Patel M. Analysis of Geomagnetically Induced Current in Power Grid During Geomagnetic Storm. – International Journal of Engineering Applied Sciences and Technology, 2020, vol. 5 (8), pp. 235–241, DOI:10.33564/IJEAST.2020.v05i08.036.
25. Trivedi N.B. et al. Geomagnetically Induced Currents in an Electric Power Transmission System at Low Latitudes in Brazil: A Case Study. – Space Weather, 2007, vol. 5 (4), DOI: 10.1029/2006SW000282.
26. Ngwira C.M. et al. Improved Modeling of Geomagnetically Induced Currents in the South African Power Network. – Space Weather, 2008, vol. 6 (11), DOI: 10.1029/2008SW000408.
27. Tozzi R. et al. A preliminary risk assessment of geomagnetically induced currents over the Italian territory. – Space Weather, 2019, vol. 17 (1), pp. 46–58, DOI: 10.1029/2018SW002065.
28. Pulkkinen A. et al. Generation of 100-Year Geomagnetically Induced Current Scenarios. – Space Weather, vol. 10 (4), DOI:10.1029/2011SW000750, 2012.
29. Сахаров Я.А. и др. Регистрация геоиндуктированных токов в региональной энергосистеме. – Практические аспекты гелиогеофизики. Материалы XI конференции «Физика плазмы в солнечной системе». М.: ИКИ РАН, 2016, с. 134–145.
30. Селиванов В.Н., Сахаров Я.А., Ефимов Б.В. Оценка влияния геоиндуктированных токов на силовые трансформаторы магистральных электрических сетей. – Труды Кольского научного центра РАН, 2016, т. 39, № 5-13, с. 96–106.
31. Сахаров Я.А. и др. Экстремальные величины геоиндуктированных токов в региональной энергосистеме. – Physics of Auroral Phenomena, Proc. XLII Annual Seminar, Apatity, 2019, с. 53–56.
32. Селиванов В.Н. и др. Анализ результатов многолетнего мониторинга токов в нейтралях автотрансформаторов. – Вестник Мурманского государственного технического университета, 2018, т. 21, № 4, с. 607–615.
33. Официальный сайт АО «СО ЕЭС» [Электрон. ресурс], URL: https://www.so-ups.ru/?id=oes_center (дата обращения 10.10.2022).
34. СТО 70238424.29.240.01.001-2012. Единая национальная электрическая сеть. Условия развития. Нормы и требования. М.: НП «ИНВЭЛ», 2013, 36 с.
35. Интерактивная карта OpenStreetMap [Электрон. ресурс], URL: https://frexosm.ru/power/#4/55/40 (дата обращения 16.10.2022).
36. Интерактивная карта загрузки центров питания ПАО «ФСК ЕЭС» [Электрон. ресурс], URL: http://portaltp.fsk-ees.ru/ (дата обращения 17.11.2022).
37. Воеводин С.В. Аналитическое выражение для тока возбуждения силового трансформатора при его подмагничивании геоиндуцированным током. – Сборник тезисов докладов XV конф. «Физика плазмы в солнечной системе». М.: ИКИ РАН, 2020, с. 299.
38. Методические указания по устойчивости энергосистем: требования к обеспечению надежности электроэнергетических систем, надежности и безопасности объектов электроэнергетики и энергопринимающих установок (утв. Приказом Минэнерго России от 03.08.2018 № 630).
39. Picher P. et al. Study of the Acceptable DC Current Limit in Core-Form Power Transformer. – IEEE Transactions on Power Delivery, 1997, vol. 12 (1), pp. 257–265, DOI: 10.1109/61.568248.
40. Лыков А.В. Теория теплопроводности. М.: Высшая школа, 1967, 599 с.
41. Силовые трансформаторы. Справочная книга / Под. ред. С.Д. Лизунова, А.К. Лоханина. М.: Энергоиздат, 2004, 616 с.
42. Lucas G. et al. A 100-Year Geoelectric Hazard Analysis for the U.S. High-Voltage Power Grid. – Space Weather, 2020, vol. 18(2), DOI:10.1029/2019SW002329.
#
1. Pilipenko V.А. Solnechno-zemnaya fizika – in Russ. (Solar-Terrestrial Physics), 2021, vol. 7, No. 3, pp. 72–110.
2. Kappenman J. Geomagnetic Storms and Their Impacts on the U.S. Power Grid: Report Prepared for Oak Ridge National Laboratory. Goleta, CA: Metatech Corporation, 2010, 197 p.
3. Baker D.N. et al. Severe Space Weather Events – Understanding Societal and Economic Impacts: A Workshop Report. Washington, DC: The National Academies Press, 2009, 32 p.
4. Bolduc L. et al. A Study of Geoelectromagnetic Disturbances in Quebec. II. Detailed Analysis of a Large Event. – IEEE Transactions on Power Delivery, 2000, vol. 15 (1), pp. 272–278, DOI:10.1109/61.847262.
5. Kappenman J.G. An Overview of the Impulsive Geomagnetic Field Disturbances and Power Grid Impacts Associated with the Violent Sun-Earth Connection Events of 29–31 October 2003 and a Comparative Evaluation with Other Contemporary Storms. – Space Weather, 2005, vol. 3 (8), DOI:10.1029/2004SW000128.
6. Pulkkinen A. et al. Geomagnetic Storm of 29–31 October 2003: Geomagnetically Induced Currents and Their Relation to Problems in the Swedish Highvoltage Power Transmission System. – Space Weather, 2005, vol. 3 (8), DOI:10.1029/2004SW000123.
7. Liu C., Li Y., Pirjola R. Observations and Modeling of GIC in the Chinese Large-Scale High-Voltage Power Networks. – Journal of Space Weather Space Climate, 2014, vol. 4 (16), DOI:10.1051/swsc/2013057.
8. Kappenman J.G. Geomagnetic Disturbances and Impacts upon Power System Operation. In book: Electric Power Generation, Transmission, and Distribution, 2007, DOI:10.1201/9781420009255.ch16.
9. Molinski T.S. Why Utilities Respect Geomagnetically Induced Currents. –Journal of Atmospheric and Solar-Terrestrial Physics, 2002, vol. 64(16), pp. 1765–1778, DOI:10.1016/S1364-6826(02)00126-8.
10. Vahnina V.V. et al. Mekhanizmy vozdeystviya kvazipostoyannyh geoindutsirovannyh tokov na elektricheskie seti (Mechanisms of Influence of Quasi-Permanent Geo-Induced Currents on Electric Networks). М.: Infra-Inzheneriya, 2018, 256 p.
11. Kuvshinov А.А. et al. Vliyanie kvazipostoyannyh tokov na elektrodinamicheskuyu stoykost' silovyh transformatorov: elementy teorii i metody ispytaniy. V 2-h chastyah (The Influence of Quasi-Constant Currents on the Electrodynamic Stability of Power Transformers: Elements of Theory and Test Methods. In 2 Parts). М.: Energoprogress, 2019.
12. Transformer Thermal Impact Assessments for DC Withstand Capability: Examining the Impacts of Geomagnetically Induced Current (GIC) on Transformer Thermal Performance. EPRI, Palo Alto, CA: 2019, 3002017708.
13. Hapgood M. The Great Storm of May 1921: An Exemplar of a Dangerous Space Weather Event. – Space Weather, 2019, vol. 17 (4), pp. 950–975, DOI:10.1029/2019SW002195.
14. Kataoka R., Iwahashi K. Inclined Zenith Aurora over Kyoto on 17 September 1770: Graphical Evidence of Extreme Magnetic Storm. – Space Weather, 2017, vol. 15(10), pp. 1314–1320, DOI:10.1002/2017sw001690.
15. Love J.J. et al. On the Lognormality of Historical Magnetic Storm Intensity Statistics: Implications for Extreme-Event Probabilities. – Geophysical Research Letters, 2015, vol. 42 (16). pp. 6544–6553, DOI:10.1002/2015GL064842.
16. Obama B. Executive Order: Coordinating Efforts to Prepare the Nation for Space Weather Events, 2016 [Electron. resource], URL: https://obamawhitehouse.archives.gov/the-press-office/2016/10/13/executive-order-coordinating-efforts-prepare-nation-space-weather-events (Date of appeal 12.10.2022).
17. Trump D.J. Executive Order on Coordinating National Resilience to Electromagnetic Pulses, 2019 [Electron. resource], URL: https://trumpwhitehouse.archives.gov/presidential-actions/executive-order-coordinating-national-resilience-electromagnetic-pulse (Date of appeal 12.10.2022).
18. National Space Weather Strategy. National Science and Technology Council. Washington, DC, 2015, 18 p.
19. Strategy for Protecting and Preparing the Homeland Against Threats of Electromagnetic Pulse and Geomagnetic Disturbances. October 9, 2018.
20. National Space Weather Program. Strategic Plan. Office of Federal Coordinator for Meteorological Services and Supporting Research FCM-P30-1995. Washington, DC, 1995.
21. NERC Standard TPL-007-4: Transmission System Planned Performance for Geomagnetic Disturbance Events. March 19, 2020.
22. Wik M. et al. Space Weather Events in July 1982 and October 2003 and the Effects of Geo-Magnetically Induced Currents on Swedish Technical Systems. – Annales Geophysicae, 2009, vol. 27(4), pp. 1775–1787, DOI:10.5194/angeo-27-1775-2009.
23. Wik M. et al. Calculation of Geomagnetically Induced Currents In the 400 kV Power Grid in Southern Sweden. – Space Weather, 2008, vol. 6 (7), DOI:10.1029/2007SW000343.
24. Anjana S., Patel M. Analysis of Geomagnetically Induced Current in Power Grid During Geomagnetic Storm. – International Journal of Engineering Applied Sciences and Technology, 2020, vol. 5 (8), pp. 235–241, DOI:10.33564/IJEAST.2020.v05i08.036.
25. Trivedi N.B. et al. Geomagnetically Induced Currents in an Electric Power Transmission System at Low Latitudes in Brazil: A Case Study. – Space Weather, 2007, vol. 5 (4), DOI: 10.1029/2006SW000282.
26. Ngwira C.M. et al. Improved Modeling of Geomagnetically Induced Currents in the South African Power Network. – Space Weather, 2008, vol. 6 (11), DOI: 10.1029/2008SW000408.
27. Tozzi R. et al. A preliminary risk assessment of geomagnetically induced currents over the Italian territory. – Space Weather, 2019, vol. 17 (1), pp. 46–58, DOI: 10.1029/2018SW002065.
28. Pulkkinen A. et al. Generation of 100-Year Geomagnetically Induced Current Scenarios. – Space Weather, vol. 10 (4), DOI:10.1029/2011SW000750, 2012.
29. Saharov Ya.А. et al. Prakticheskie aspekty geliogeofiziki. Materialy XI konferentsii «Fizika plazmy v solnechnoy sisteme» – in Russ. (Practical aspects of heliogeophysics. Proceedings of the XI Conference "Plasma Physics in the Solar System"). М.: IKI RАN, 2016, pp. 134–145.
30. Selivanov V.N., Saharov Ya.A., Efimov B.V. Trudy Kol'skogo nauchnogo tsentra RAN – in Russ. (Proceedings of the Kola Scientific Center of the Russian Academy of Sciences), 2016, vol. 39, No. 5-13, pp. 96–106.
31. Saharov Ya.А. et al. Physics of Auroral Phenomena, Proc. XLII Annual Seminar, Apatity, 2019, pp. 53–56.
32. Selivanov V.N. et al. Vestnik Murmanskogo gosudarstvennogo tekhnicheskogo universiteta – in Russ. (Bulletin of the Murmansk State Technical University), 2018, vol. 21, No. 4, pp. 607–615.
33. Websitе of JSC "SO UES" [Electron. resource], URL: https://www.so-ups.ru/?id=oes_center (Date of appeal 10.10.2022).
34. SТО 70238424.29.240.01.001-2012. Edinaya natsional'naya elektricheskaya set'. Usloviya razvitiya. Normy i trebovaniya (Unified National Electric Grid. Development Conditions. Norms and Requi-rements). М.: NP «INVEL», 2013, 36 p.
35. OpenStreetMap [Electron. resource], URL: https://frexosm.ru/power/#4/55/40 (Date of appeal 16.10.2022).
36. Interaktivnaya karta zagruzki tsentrov pitaniya PAO «FSK EES» (Interactive Loading Map of the Catering Centers of PJSC FGC UES) [Electron. resource], URL: http://portaltp.fsk-ees.ru/ (Date of appeal 17.11.2022).
37. Voevodin S.V. Sbornik tezisov dokladov XV konf. «Fizika plazmy v solnechnoy sisteme» – in Russ. (Proceedings of the XV conf. "Plasma Physics in the solar system"). М.: IКI RАN, 2020, p. 299.
38. Metodicheskie ukazaniya po ustoychivosti energosistem: trebovaniya k obespecheniyu nadezhnosti elektroenergeticheskih sistem, nadezhnosti i bezopasnosti ob"ektov elektroenergetiki i energoprinimayushchih ustanovok (utv. Prikazom Minenergo Rossii ot 03.08.2018 № 630) (Methodological guidelines on the stability of power systems: requirements for ensuring the reliability of electric power systems, reliability and safety of electric power facilities and power receiving installations (approved by Order of the Ministry of Energy of the Russian Federation No. 630 dated 03.08.2018)).
39. Picher P. et al. Study of the Acceptable DC Current Limit in Core-Form Power Transformer. – IEEE Transactions on Power Delivery, 1997, vol. 12 (1), pp. 257–265, DOI: 10.1109/61.568248.
40. Lykov A.V. Teoriya teploprovodnosti (Theory of Thermal Conductivity). М.: Vysshaya shkola, 1967, 599 p.
20. Silovye transformatory. Spravochnaya kniga (Power Trans-formers. Reference Book) / Under ed. S.D. Lizunov, А.К. Lokhanin. М.: Energoizdat, 2004, 616 p.
42. Lucas G. et al. A 100-Year Geoelectric Hazard Analysis for the U.S. High-Voltage Power Grid. – Space Weather, 2020, vol. 18(2), DOI:10.1029/2019SW002329.
Published
2022-12-19
Section
Article