The Measurement and Analysis of the Hysteresis Loss in a Multifilament MgB2 Superconducting Wire

  • Igor' A. RUDNEV
  • Ruslan G. BATULIN
  • Saveliy A. HOHORIN
  • Svetlana V. VESELOVA
Keywords: magnesium diboride, second-generation high-temperature superconductors, anisotropy, magnetization, hysteresis loss

Abstract

The article presents the results obtained from measuring the magnetization of and hysteresis loss in a multifilament MgB2 superconducting wire (produced by ASG Superconductors) for magnetic field applied in two directions: in parallel and perpendicular to the conductor axis. The measurement temperatures were varied in the range of 5–45 K. The MgB2 superconducting fraction magnetization curves were obtained by subtracting the magnetization of the wire ferromagnetic matrix measured at temperature T = 45 K, which is above the superconductor critical temperature Tc , from the magnetization value of the entire specimen. From these magnetization curves, the dependences of the hysteresis energy loss on the external magnetic field strength Qh(Н) were obtained. It is shown that, with the field oriented perpendicular to the MgB2 wire axis and at the external field characteristic values, the hysteresis loss is twice as large. A method for calculating the hysteresis loss in a superconducting wire and methods for reducing it are proposed. The obtained results can be used to optimize NMR and MRI facilities, superconducting motors and generators made using MgB2 superconducting wire produced by ASG Superconductors.

Author Biographies

Igor' A. RUDNEV

(National Research Nuclear University "MEPhI", Moscow; Kazan Federal University, Kazan, Russia) – Head of the Solid-State Physics and Nanosystems Dept., Leading Researcher; Dr. Sci. (Phys.-Math.)

Ruslan G. BATULIN

(Kazan Federal University, Kazan, Russia) – Docent of the General Physics Dept.; Head of the Research Laboratory “Quantum Simulators”, Cand. Sci. (Phys.-Math.)

Saveliy A. HOHORIN

(Kazan Federal University, Kazan, Russia) – Laboratory Assistant of the General Physics Dept.

Svetlana V. VESELOVA

(National Research Nuclear University "MEPhI", Moscow; Kazan Federal University, Kazan, Russia) – Postgraduate Student of the of Solid-State Physics and Nanosystems Dept., Junior Research Assistant.

References

1. Chow C.C.T., Ainslie M.D., Chau K.T. High Temperature Superconducting Rotating Electrical Machines: An Overview. – Energy Reports, 2023, vol. 9, pp. 1124–1156, DOI: 10.1016/j.egyr.2022.11.173.
2. Park S.I. et al. Comparison of Superconducting Generator with 2G HTS and MgB2 Wires. – Progress in Superconductivity and Cryogenics, 2013, vol. 15, No. 4, pp. 48–52, DOI: 10.9714/psac.2013. 15.4.048.
3. Nam G.-D. et al. Design and Comparative Analysis of MgB2 and YBCO Wire-Based-Superconducting Wind Power Generators. – IEEE Transactions on Applied Superconductivity, 2018, vol. 28, No. 3, p. 5205605, DOI: 10.1109/TASC.2018.2797929.
4. Sumption M. AC Loss of Superconducting Materials in Motors and Generators for Very High-Density Motors and Generators for Hybrid-Electric Aircraft. – AIAA/IEEE Electric Aircraft Technologies Symposium, 2018, DOI: 10.2514/6.2018-5001.
5. Kalsi S.S. et al. Motors Employing ReBCO CORC and MgB2 Superconductors for AC Stator Windings. – IEEE Transactions on Applied Superconductivity, 2021, vol. 31(9), DOI: 10.1109/TASC.2021.3113574.
6. Raza A., Ali S.S. Superconductors for Magnetic Imaging Resonance Applications. – Materials Research Foundations, 2022, vol. 132, pp. 230–255, DOI: 10.21741/9781644902110-13.
7. Nagamatsu J. et al. Superconductivity at 39 K in Magnesium Diboride. – Nature, 2001, No. 410, pp. 63–64, DOI: 10.1038/35065039.
8. Антипов В.Н., Грозов А.Д., Иванова А.В. Cверхпроводниковые ветрогенераторы мощностью 10 МВт и более (обзор зарубежных публикаций). – Электричество, 2020, № 10, c. 59–67.
9. Xi X.X. et al. MgB2 Thin Films by Hybrid Physical-Chemical Vapor Deposition. – Physica C: Superconductivity, vol. 456, № 1-2, pp. 22–37, DOI: 10.1016/j.physc.2007.01.029.
10. Xi X. MgB2 Thin Films. – Superconductor Science and Technology, 2009, vol. 22(4), DOI: 10.1088/0953-2048/22/4/043001.
11. Jeong H. et al. Enhanced Critical Current Density of MgB2 Superconductor Using a Milled MgB4 Precursor. – Journal of Alloys and Compaunds, 2021, vol. 857, DOI: 10.1016/j.jallcom.2020.158253.
12. Patnaik S. et al. Electronic Anisotropy, Magnetic Field-Temperature Phase Diagram and Their Dependence on Resistivity in C-Axis Oriented MgB2 Thin Films. – Superconductor Science and Technology, 2001, vol. 14 (6), p. 315, DOI: 10.1088/0953-2048/14/6/304.
13. Sharma R.G. Superconductivity: Basics and Applications to Magnets. – Springer Nature, 2021, vol. 214, p. 649, DOI: 10.1007/978-3-030-75672-7.
14. Kario A. et al. Isotropic Behavior of Critical Current for MgB2 Ex Situ Tapes with 5 wt.% Carbon Addition. – Physica C: Superconductivity, 2012, vol. 483, pp. 222–224, DOI: 10.1016/j.physc.2012.07.013.
15. Высоцкий В.С. Крупномасштабные применения сверхпроводимости спустя столетие после ее открытия. – Электричество, 2014, т. 11, c. 4–16.
16. Носов А.А. Исследования и разработка методов испытаний сверхпроводящих кабелей на основе высокотемпературных сверхпроводников диборида магния: дис. … канд. техн. наук. М: ВНИИКП, 2017, 145 с.
17. Цаплева А.С. Структура и свойства сверхпроводников на основе диборида магния и разработка режимов их изготовления: дис. … канд. техн. наук. М: ВНИИНМ, 2019, 136 с.
18. Занегин C.Ю., Зубко В.В., Иванов Н.С. Анализ потерь в обмотках и стопках из ВТСП лент второго поколения. – Электричество, 2020, № 5, с. 61–68,
19. Зубко В.В. и др. Анализ гистерезисных потерь в силовых кабелях на основе высокотемпературных сверхпроводящих лент второго поколения. – Электричество, 2014, № 4, с. 24–33.
20. Ghosh A.K., Robins K.E., Sampson W.B. Magnetization Measurements on Multifilamentary Nb3Sn and NbTi Conductors. – IEEE Transactions on Magnetics, 1985, vol. 21, No. 2, pp. 328–331, DOI: 10.1109/TMAG.1985.1063702.
21. Руднев И.А. и др. Гистерезисные потери в многоволоконных ниобий-оловянных композитах с танталовым диффузионным барьером. – Журнал технической физики, 1996, № 10, с. 118–127.
---
Исследование выполнено за счет гранта Российского научного фонда № 22-72-10088, https://rscf.ru/project/22-72-10088/.
#
1. Chow C.C.T., Ainslie M.D., Chau K.T. High Temperature Superconducting Rotating Electrical Machines: An Overview. – Energy Reports, 2023, vol. 9, pp. 1124–1156, DOI: 10.1016/j.egyr.2022.11.173.
2. Park S.I. et al. Comparison of Superconducting Generator with 2G HTS and MgB2 Wires. – Progress in Superconductivity and Cryogenics, 2013, vol. 15, No. 4, pp. 48–52, DOI: 10.9714/psac.2013.15.4.048.
3. Nam G.-D. et al. Design and Comparative Analysis of MgB2 and YBCO Wire-Based-Superconducting Wind Power Generators. – IEEE Transactions on Applied Superconductivity, 2018, vol. 28, No. 3, p. 5205605, DOI: 10.1109/TASC.2018.2797929.
4. Sumption M. AC Loss of Superconducting Materials in Motors and Generators for Very High-Density Motors and Generators for Hybrid-Electric Aircraft. – AIAA/IEEE Electric Aircraft Technologies Symposium, 2018, DOI: 10.2514/6.2018-5001.
5. Kalsi S.S. et al. Motors Employing ReBCO CORC and MgB2 Superconductors for AC Stator Windings. – IEEE Transactions on Applied Superconductivity, 2021, vol. 31(9), DOI: 10.1109/TASC.2021.3113574.
6. Raza A., Ali S.S. Superconductors for Magnetic Imaging Resonance Applications. – Materials Research Foundations, 2022, vol. 132, pp. 230–255, DOI: 10.21741/9781644902110-13.
7. Nagamatsu J. et al. Superconductivity at 39 K in Magnesium Diboride. – Nature, 2001, No. 410, pp. 63–64, DOI: 10.1038/35065039.
8. Antipov V.N., Grozov A.D., Ivanova A.V. Elektrichestvo – in Russ. (Electricity), 2020, No. 10, pp. 59–67.
9. Xi X.X. et al. MgB2 Thin Films by Hybrid Physical-Chemical Vapor Deposition. – Physica C: Superconductivity, vol. 456, № 1-2, pp. 22–37, DOI: 10.1016/j.physc.2007.01.029.
10. Xi X. MgB2 Thin Films. – Superconductor Science and Technology, 2009, vol. 22(4), DOI: 10.1088/0953-2048/22/4/043001.
11. Jeong H. et al. Enhanced Critical Current Density of MgB2 Superconductor Using a Milled MgB4 Precursor. – Journal of Alloys and Compaunds, 2021, vol. 857, DOI: 10.1016/j.jallcom.2020.158253.
12. Patnaik S. et al. Electronic Anisotropy, Magnetic Field-Temperature Phase Diagram and Their Dependence on Resistivity in C-Axis Oriented MgB2 Thin Films. – Superconductor Science and Technology, 2001, vol. 14 (6), p. 315, DOI: 10.1088/0953-2048/14/6/304.
13. Sharma R.G. Superconductivity: Basics and Applications to Magnets. – Springer Nature, 2021, vol. 214, p. 649, DOI: 10.1007/978-3-030-75672-7.
14. Kario A. et al. Isotropic Behavior of Critical Current for MgB2 Ex Situ Tapes with 5 wt.% Carbon Addition. – Physica C: Superconductivity, 2012, vol. 483, pp. 222–224, DOI: 10.1016/j.physc.2012.07.013.
15. Vysotskiy V.S. Elektrichestvo – in Russ. (Electricity), 2014, No. 11, pp. 4–16.
16. Nosov А.А. Issledovaniya i razrabotka metodov ispytaniy sverhprovodyashchih kabeley na osnove vysokotemperaturnyh sverh-provodnikov diborida magniya: dis. … kand. tekhn. nauk (Research and Development of Test Methods for Superconducting Cables Based on High-Temperature Superconductors of Magnesium Diboride: Dis. ... Cand. Sci. (Eng.)). М: VNIIKP, 2017, 145 p.
17. Tsapleva A.S. Struktura i svoystva sverhprovodnikov na osnove diborida magniya i razrabotka rezhimov ih izgotovleniya: dis. … kand. tekhn. nauk (Structure and Properties of Superconductors Based on Magnesium Diboride and Development of Their Manufacturing Modes: Dis. ... Cand. Sci. (Eng.)). М: VNIINM, 2019, 136 p.
18. Zanegin S.Yu., Zubko V.V., Ivanov N.S. Elektrichestvo – in Russ. (Electricity), 2020, No. 5, pp. 61–68,
19. Zubko V.V. et al. Elektrichestvo – in Russ. (Electricity), 2014, No. 4, pp. 24–33.
20. Ghosh A.K., Robins K.E., Sampson W.B. Magnetization Measurements on Multifilamentary Nb3Sn and NbTi Conductors. – IEEE Transactions on Magnetics, 1985, vol. 21, No. 2, pp. 328–331, DOI: 10.1109/TMAG.1985.1063702.
21. Rudnev I.A. et al. Zhurnal Tekhnicheskoy Fiziki – in Russ. (Technical Physics), 1996, No. 10, pp. 118–127.
---
The research was financially supported by the Russian Science Foundation, grant no. 22-72-10088, https://rscf.ru/project/22-72-10088/.
Published
2023-05-18
Section
Article